• Title/Summary/Keyword: Leaf production

Search Result 1,385, Processing Time 0.027 seconds

Population Dynamics of Arisaema robustum (넓은잎천남성 (Arisaema robustum) 개체군의 동태)

  • 민병미;유진숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 1998
  • Arisaema robustum, which has the ability to change sex, was studied in a temperate broadleaf forest of Sanseong-ri, Joongbu-myeon, Gwangju-gun, Kyonggi Province, Korea. \ulcornerThe study, carried out from 1993 to 1997, focused on population dynamics energy budget among organs, size distribution, mortality, the relationships between sex and size, seed production and germination rate. In terms of energy budget among the organs, the ratio of aboveground to belowground biomass was 36.6 : 63.4 in non-female plants, and 81.4 : 18.6 in female plants. Also, in female plants, the ration of leaf to sexual organ biomass was 39.5 : 41.9. Therefore, the belowground ratio of female plants was lower than that of non-female plants. Plants were classified into 8 levels relative to the amount of leaf area by $100cm^2$. The rates of the smallest and the largest classes were 49% and 1%, respectively, and population distribution by size was relatively stable. The mortality averaged 13.1% per year and decreased in inverse proportion to leaf size (6.6% in the smallest and 0.0% in the largest size classes). Leaf areas were $64.1{\pm}48.5cm^2$ in non-flowering plants, $232.1{\pm}123.9cm^2$ in males and $444.8{\pm}153.9cm^2$ in females. The increase rates of leaf area per year varied from 1.9% in plants changing from female tomale, to 152.4% in plants changing from non-flowering to female. But plants which remained female for 2 years showed a decrease of 34.7%. >From this result, it is thought that the female plants invest more energy to reproduction than to vegetative organs. The correlation coefficient (CC) value between plant size and the number of seeds produced (0.55) was larger than the CC value between plant size and total seed weight (0.73). That is, the larger the plant size, the heavier the seed produced. The germination rate increased along with seed weight, and it was 95% in plants which were over 60mg fresh weight/seed.

  • PDF

Effect of Sta-Green on Leaf and Stem Production of Angelica acutiloba

  • Choi Seong-Kyu
    • Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • This study was conducted to develop effective production system in greenhouse for leaves and stems of Angelica acutiloba by fertilizing of Sta-Green in pots. The results obtained are summarized as follows. Germination rate of Angelica acutiloba seeds collected in 2003 was $13\%$, while germination rate of seeds Collected in 2004 was above $91\%$. Seed germination rate and plant biomass of Angelica acutiloba collected in 2004 were higher than seed gathering in 2003. Especially, plant growth and yield of Angelica acutiloba grown in pot(The pots was filled with soil mixtures of Sta-Green and Peat Moss mixed with 45:55 ratio.) was the highest. These results indicate that leaf and stem production of Angelica acutiloba can be improved by fertilizing of Sta-Green in pots and optimizing seed collecting time in greenhouse.

  • PDF

Effects of Plant Types on Group Production Structure, Growth and Yield of Green Pepper (Capcicum annuum L.) in Greenhouse (시설고추 초형이 군락생산구조, 생육 및 수량에 미치는 영향)

  • Jeon, Hee;Kim, Kyung-Je
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.86-91
    • /
    • 1997
  • This study was conducted to improve group production structure of green pepper in greenhouse. Plant was trained 45$^{\circ}$ branching, erection after 45$^{\circ}$ branching and erection. Light absorption index was calculated to investigate relation of light intensity and leaf area in different plant type according to plant height. Group production structure was analyzed with relative light intensity and dry weight of plant. In total growing seasons, group production structures were good in order of erect type after 45$^{\circ}$ branching > erect type > 45$^{\circ}$ branching type in view of light absorption, leaf and stem distribution. Plant height of erect type was taller than any other case, and average node length of 45$^{\circ}$ branching type was shorter than any other case. But stem diameter, leaf area, fresh weight and dry weight of erect type after 45$^{\circ}$ branching were superior to any other case. Yield is order of erect type after 45$^{\circ}$ branching > 45$^{\circ}$ branching type > erect type.

  • PDF

An Observation Supporting System for Predicting Citrus Fruit Production

  • Kang, Hee Joo;Yoo, Seung Tae;Yang, Young Jin
    • Agribusiness and Information Management
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • The purpose of this study is to develop a growth prediction model that can predict growth and development information influencing the production of citrus fruits: the growth model algorithm that can predict floral leaf ratio, number of fruit sets, fruit width, and overweight depending on the main period of growth and development with consideration of the applied weather factors. Every year, large scale of manpower was mobilized to investigate the production of outdoor-grown citrus fruits, but it was limited to recycling the data without an observation supporting system to systemize the database. This study intends to create a systematical database based on the basic data obtained through the observation supporting system in application of an algorithm according to the accumulated long term data and prepare a base for its continuous improvement and development. The importance of the observed data is increasingly recognized every year, and the citrus fruit observation supporting system is important for utilizing an effective policy and decision making according to various applications and analysis results through an interconnection and an integration of the investigated statistical data. The citrus fruit is a representative crop having a great ripple effect in Jeju agriculture. An early prediction of the growth and development information influencing the production of citrus fruits may be helpful for decision making in supply and demand control of agricultural products.

Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type (인공광 식물공장내 광질 제어가 작물생육에 미치는 영향)

  • Heo, Jeong-Wook;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.

Antioxidant effect and iNOS, COX-2 Expression Inhibition on RAW 264.7 Cell of Mangifera indica L. Leafs (애플망고 잎의 추출물의 항산화 및 대식세포(RAW 264.7)에서 iNOS, COX-2 발현 저해 효과)

  • Yoo, Dan-Hee;Lee, In-Chul
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.783-790
    • /
    • 2020
  • The present study investigates the antioxidant and anti-inflammatory activities of Mangifera indica L. leaf extract. The total polyphenol content was measured using the Folin-Denis method. Results showed that the M. indica L. leaf extract of water and 70% ethanol showed a content of 440.83±1.02, 475.63±1.3 mg/100 g tannic acid equivalent. To assess antioxidant activity and electron-donating ability, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity were measured, and all extracts were found to be highly efficacious. To assess cell viability of the extract from M. indica L. leaf on macrophage cells (RAW 264.7), a 3-[4,5-dimethyl-thiazol-2- yl]-2,5-diphenyl-tetrazolium-bromide assay was performed. The following experiments were conducted in section where cells was not shown of toxicity. In order to effectively determine anti-inflammatory activity, inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells was examined using a Griess assay. The result showed that M. indica L. leaf extract concentration-dependently inhibited NO production. M. indica L. leaf extract was measured using Western blot, reverse transcription- polymerase chain reaction (RT-PCR) that to find the production of pro-inflammatory factor on stimulated RAW 264.7 cells of LPS. According to the results of this study, the M. indica L. leaf extract showed excellent effectiveness in antioxidant and anti-inflammatory activity, thus confirming its usability as a natural material and a functional raw material for cosmetics.

Total Phenolic Compound, Total Flavonoid Compound And Anti-Inflammatory Inhibitory Effects of Psidium Guajava Leaf Extract (구아바 잎 추출물의 총 폴리페놀과 플라보노이드 함량 및 항 염증 억제 효과)

  • Lee, Jeong-Seon;Kim, Chun-Dug
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.254-262
    • /
    • 2018
  • It was intended to check a possibility of activity of Psidium guajava leaf extract as anti-oxidant and anti-inflammatory material. Total polyphenol and total flavonoid content of Psidium guajava leaf extract was checked. Cream having inhibitory effect on inflammation through toxicity and NO production inhibition in RAW 264.7 cell was manufactured, and skin safety was evaluated. It was confirmen that total polyphenol and flavonoid content of Psidium guajava leaf extract was 126.4 mg/g and 223.17 mg/g respectively, which was high content. According to the results of checking toxicity through cell viability in RAW 264.7 cell, cytotoxicity was not shown. And NO production indicating inflammatory disease was inhibited concentration-dependently. According to the results of carrying out single patch test after manufacturing the cream containing the Psidium guajava leaf extract, skin irritation did not occur for 24 h to put patch on skin or for 24 h after removing the patch. Putting these results together, it was verified that there was possibility of application as raw materials for cosmetics, which would have anti-oxidant activity owing to the high polyphenol and flavonoid content of Psidium guajava leaf extract and anti-inflammatory material through NO production inhibition.

Characteristics of Sweet Pumpkin Yanggaeng with Stevia Leaf Powder as Partial Replacer of Sucrose (설탕량 감소를 위한 스테비아 잎 분말 적용 단호박 양갱)

  • Choi, Eun-Hee;Chung, Chang-Ho
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.83-92
    • /
    • 2018
  • Sweet pumpkin yanggaeng were produced with stevia leaf powder as a partial sugar replacer(0 to 20% sucrose weight) and antioxidant. Characteristics of the yanggaeng were compared in moisture, total soluble solids, pH, color, texture, antioxidant properties, and preference scores. Moisture and total soluble solids were proportionally increased with increasing addition of stevia leaf powder(p<0.001). pH of control (without stevia) and SLP20(with 20% replacement of sucrose) were 7.05 and 6.82, respectively. L-value, a-value, and b-value were decreased with increasing amount of stevia leaf powder (p<0.001). Antioxidant activities (total polyphenols and DPPH radical scavenging activity) were gradually increased as more stevia leaf powder included in the yanggaeng(p<0.001). SLP20 being significantly different from others (p<0.001) had the highest values of hardness and chewiness, but there was no significant difference between cohesiveness and adhesiveness among samples. SLP4 had the highest preference in appearance and texture, otherwise SLP8 did the highest scores in flavor, sweetness and overall preference. SLP8, in which 8% sucrose was replaced with stevia leaf powder, was considered to be the most desirable for production of sweet pumpkin yanggaeng.

Studies on the Pear Abnormal Leaf Spot Disease 1. Occurrence and Damage (배나무잎 이상반점증상에 관한 연구 1. 발생상황과 피해)

  • 남기웅;김충회
    • Korean Journal Plant Pathology
    • /
    • v.10 no.3
    • /
    • pp.169-174
    • /
    • 1994
  • A new unidentified pear leaf spot disease presumed to first occur in the late 1970's has recently become prevalent over the pear growing areas, and caused the greatest problem for pear production in Korea. The disease began to develop on pear leaves at mid- to late May, peaked at mid- to late une, but stopped further development until September in cool climate. Leaf lesions are 0.9∼2.5 mm in diam., oval or irregular to rectangular in shape, first appeared reddish purple, later changed to dark brown, and to whitish grey in the late season. Lesions were limited to appear only on the mature, hardened leaves, initially from leaf margin or near the leaf veins, and later scattered over the leaf surface. Individual lesions usually did not enlarge, but often coalesced each other, commonly causing shot holes and eventual early falling. The disease was most severe on the major pear cultivars Niitaka and Okusankichi ranged with 4 to 100% infections in trees, depending on the orchards, but not on the cultivar Chojuro. Damages from the disease included lower fruit weight, and higher acid and less sugar content in fruits, resulting in lowering the overall fruit quality. Etiology of the disease including identification of the causal organism is in a separate paper.

  • PDF

Mixed Infection of Sugarcane Yellow Leaf Virus and Grassy Shoot Phytoplasma in Yellow Leaf Affected Indian Sugarcane Cultivars

  • Nithya, Kadirvel;Parameswari, Balasubramaniam;Viswanathan, Rasappa
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.364-377
    • /
    • 2020
  • Sugarcane is an important sugar crop contributes more than 80% of world sugar production. Mosaic, leaf fleck, and yellow leaf (YL) are the major viral diseases affecting sugarcane, amongst YL occurrence is widely reported in all the sugarcane growing countries. It is caused by Sugarcane yellow leaf virus (SCYLV) and detailed works were done on complete genome characterization, transmission, and management. However, in countries like Egypt, South Africa, Cuba, Mauritius and Hawaii, the disease was reported to the cause of sugarcane yellow leaf phytoplasma (SCYP) and/or SCYLV as single/combined infections. Hence, we have investigated in detail to identify the exact Candidatus phytoplasma taxon associated in Indian cultivars affected with YL. The sequencing results and the restriction fragment length polymorphism pattern of the PCR products using the universal phytoplasma primers confirmed presence of sugarcane grassy shoot (SCGS) phytoplasma (16SrXI group) in the YL-affected plants. Mixed infection of SCYLV and SCGS phytoplasma was estimated as 32.8% in YL affected plants. Evolutionary genetic relationship between SCYP and SCGS phytoplasma representatively taken from different countries showed that SCYP from South Africa and Cuba were diverged from others and had a highest similarity with SCGS phytoplasma. Although we wanted to identify SCYP from YL affected Indian sugarcane cultivars, the study clearly indicated a clear absence of SCYP in YL affected plants and we found SCYLV as the primary cause for the disease.