• Title/Summary/Keyword: Layered material

Search Result 756, Processing Time 0.04 seconds

Effect of Amino Silane Coupling Agent on the AC Electrical Breakdown Phenomena of Epoxy/Layered Silicate Nanocomposite in Needle-plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.149-152
    • /
    • 2012
  • The effects of amino silane coupling agent on the AC electrical treeing and breakdown behaviors in an epoxy/layered silicate (1 wt%) were examined in needle-plate electrode geometry. A layered silicate was exfoliated in an epoxy base resin by using our AC electric field apparatus. To measure the tree initiation and propagation and the breakdown rate, an alternating current (AC) of 10 kV (60 Hz) was applied to the specimen in needle-plate electrode arrangement with a $30^{\circ}C$ insulating oil bath. In the epoxy/amino silane system, the tree initiation time was 11.5 times higher and the breakdown time was 17.9 times higher than those of the neat epoxy resin. The tree initiation time in the epoxy/layered silicate (1 wt%) system with the amino silane was 2.0 times higher, and the breakdown time was 1.5 times higher than those of the epoxy/layered silicate (1 wt%) system.

A Study on Electro-deposited Multi-layered Diamond Tool for Grinding Sapphire Wafers (사파이어 절삭용 다층 전착 다이아몬드 공구에 대한 연구)

  • Lim, Goun;Song, William;Hong, Joo Wha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.222-226
    • /
    • 2017
  • Recently sapphire wafer has expected as smart phone cover material, however, brittle nature of sapphire needed edge grinding processes to prevent early initiation of cracks. Electro-deposited multi-layered groove tools with $35{\mu}m$ diamond particles were studied for sapphire wafer grinding. Solid particle flow behaviors in agitated electrolyte was studied using PIV(Particle Image Velocimetry), and uniform particle distribution in Ni bond were obtained when agitating impeller was located lower part of electrolyte. Hardness values of $400{\pm}50Hv$ were maintained for retention of diamond particles in electro-deposited bond layer. Sapphire wafer edge grinding test was carried out and multi-layered $160{\mu}m$ thick diamond tool showed much greater grinding capabilities up to 2000 sapphire wafers than single-layered $50{\mu}m$ thick diamond electro-deposited tools of 420 wafers. The reason why 3 times thicker multi-layered tools than single-layered tools showed 5 times longer tool lives in grinding processes was attributed to self-dressed new diamond particles in multi-layered tools, and multi-layered diamond tools could be promising for sapphire grinding.

Development of Seismic Performance Evaluation Reinforcement by FRP and Ductile Material Layered Composites (섬유강화플라스틱과 연성재 적층복합체로 구성된 내진성능보강재의 개발)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Kim, Ki-Hong;Joo, Chi-Hong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1486-1491
    • /
    • 2010
  • Recently, the frequency and magnitude of the earthquake have increased. The structural safety of the public facilities such as bridges and tunnels etc. which were not concerned for earthquake resistant design are increased. Fiber reinforcement polymer that has been frequently studied for seismic retrofit has advantage as seismic reinforcement material, but it has disadvantage of the brittleness. Therefore, the investigation of safety and seismic reinforcement are required. In this study, new FRP-ductile material layered composites proposed to seismic performance reinforced of subway tunnel. Tensile test of FRP-ductile material layered composites showed that Maximum tensile force of FRP-ductile using Aluminum is similar to existing FRP reinforcement material and maximum strain was increased. In case of application of domestic subway tunnel which need ductility, layered composites of FRP-Aluminum is estimated effectively for increase of seismic performance.

  • PDF

Micromechanical Models for the Evaluation of Elastic Moduli of Concretes (콘크리트 탄성계수 추정의 미시역학적 모델)

  • 조호진;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.383-391
    • /
    • 1997
  • The prediction of effective properties of heterogeneous material like concrete is of primary importance in design or analysis. This paper os about micromechanice-based evaluation of elastic moduli of concretes considering composite material behavior. In this study, micromechanixe-based schemes for the effective elastic modui of the lightweight foamed concrete and the normal concrete are proposed based on averaging techniques using a single-layered inclusion model and a multi-phase and multi-layered inclusion model. respectively, For the verification's sake, elastic moduli evaluated in this study are compared with experimental data and results by existing formula.

  • PDF

Fabrication and FEM Analysis of Wind-Mill Type Ultrasonic Motors using Piezoelectric Ceramics (압전 세라믹스를 이용한 풍차형 초음파모터의 제작과 유한요소해석)

  • 강형우;이상기;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.373-376
    • /
    • 2000
  • The modified Moonie(Cymbal) transducer has been investigated for an accelerometer application. This paper present a wind-mill type ultrasonic motors using ternary piezoelectric ceramics and aluminum endcaps applied by cymbal transducer. The maximum displacement was increased depend on applied voltage and layer number. The multi-layer was fabricated by tape casting using doctor-blade process. The maximum displacement of multi-layered ultrasonic motor was much higher than that of one-layered.

  • PDF

Vibration Damping Analysis of Multi-Layered Viscoelastic Material (다층 점탄성재료의 진동감쇠 특성에 관한 연구)

  • 윤영식;황동환;이상조
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.487-496
    • /
    • 1994
  • Recently, the application of viscoelastic material in the field of vibration isolation has gradually increased due to its achievement in structural damping capacity, and many of the theoretical and experimental study has been carried out. In this study, the dynamic characteristics of the visoelastically supported cantilever beam, of which govering equation is based on the Bernoulli- Euler equation, is analyzed theoretically and experimentally. Expression for stiffness of multi-layered viscoelastic materal has been developed using variables such as frequency and number of layers, and further, based on this expression, damping characteristic of the beam is investigated with experimental verification.

  • PDF

Hydrothermal Synthesis and Exfoliation of Mg/Al Layered Double Hydroxide with Tailored Aspect Ratio (수열 합성 및 박리에 의한 Mg/Al 층상 이중 수산화물의 종횡비 제어)

  • Hwang, Sung-Hwan;Kim, Donghyun;Kim, Yewon;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.822-827
    • /
    • 2017
  • Mg/Al layered double hydroxide with two-dimensional (2D) nanostructures was synthesized by a hydrothermal technique. The morphology and aspect ratio of $Mg_4Al_2(OH)_{14}3H_2O$ were controlled by the concentration and kinds of the hydrolysis agent, and temperature. The aspect ratio of $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides with the 2D hexagonal crystal structure was tailored from about 12.6 to about 45.7. The intercalated $CO{_3}^{2-}$ anions of the synthesized 2D $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides were exchanged to $NO_3{^-}$ anions. The bulk 2D $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides with the increased space between two layers due to the anion exchange were exfoliated in a formamide solution. The aspect ratio of the exfoliated 2D $Mg_4Al_2(OH)_{14}3H_2O$ layered double hydroxides increased to 570.3.

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong;Lee, Seon-Jin;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.272-278
    • /
    • 2021
  • In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Efficient Transdermal Penetration and Improved Stability of L-Ascorbic Acid Encapsulated in an Inorganic Nanocapsule

  • Yang, Jae-Hun;Lee, Sun-Young;Han, Yang-Su;Park, Kyoung-Chan;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.499-503
    • /
    • 2003
  • Encapsulation of L-ascorbic acid (vitamin C) within a bio-compatible layered inorganic material was achieved by coprecipitation reaction, in which the layered inorganic lattice and its intercalate of vitamin C are simultaneously formed. The nano-meter sized powders of vitamin C intercalate thus prepared was again encapsulated with silica nano-sol to form a nanoporous shell structure. This ternary nanohybrid of vitamin Clayered inorganic core-$SiO_2$ shell exhibited an enhanced storage stability and a sustained releasing of vitamin C. Furthermore, the nano-encapsulation of vitamin C with inorganic mineral was very helpful in delivering vitamin C molecules into skin through stratum corneum, facilitating transdermal penetration of vitamin C in topical application.