• 제목/요약/키워드: Lattice-Boltzmann method

검색결과 162건 처리시간 0.023초

이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델 (The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model)

  • 김미래;첸빙키;김경천
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

가상경계-격자 볼츠만 방법을 이용한 유동장내 나노/마이크로 입자에 작용하는 힘의 해석 (Force Analysis on the Nano/Micro Particle in a Flow using Immersed Boundary-Lattice Boltzmann Method)

  • 조홍주;이세영
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.35-44
    • /
    • 2022
  • Immersed boundary-Lattice Boltzmann Method (IB-LBM) is used for the analysis of flow over the circular cylinder in the concept of fluid-structure interaction analysis (FSI). Recently, IB-LBM has shown the enormous possibility for the application of various biomedical engineering fields, such as the movement of a human body or the behavior of the blood cells and/or particle-based drug delivery system in blood vessels. In order for the numerical analysis of the interaction between fluid and solid object, immersed boundary method and lattice Boltzmann method are coupled to analyze the flow over a cylinder for low Reynolds laminar flow (Re=10, 20, 40 and 100) with Zhu-He boundary condition at the boundary. With the developed IB-LBM, the flow around the cylinder in the uniform flow is analyzed for the laminar flow and the drag and lift coefficients and recirculation length are compared to the previous results.

Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구 (SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD)

  • ;김용현;이준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구 (SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD)

  • ;김용현;이준상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

Numerical Simulation of Shock Wave Propagation using the Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Michihisa Tsutahara;Ro, Ki-Deok;Lee, Young-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1327-1335
    • /
    • 2002
  • The shock wave process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over the shock thickness which is comparable to the mean free path of the gas molecules involved. This shock wave fluid phenomenon is simulated by using the finite difference lattice Boltzmann method (FDLBM). In this paper, a new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of speeding up the calculation as well as stabilizing the numerical scheme. The numerical results of the proposed model show good agreement with the theoretical predictions.

차분격자볼츠만법에 의한 유체음의 직접계산 (Direct Simulation of Acoustic Sound by the Finite Difference Lattice Boltzmann Method)

  • 강호근;노기덕;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1827-1832
    • /
    • 2003
  • In this research, the simulation method for acoustic sounds by a uniform flow around a two-dimensional circular cylinder by using the finite difference lattice Boltzmann model is explained. To begin with, we examine the boundary condition which determined with the distribution function $f_i^{(0)}$ concerning with density, velocity and internal energy at boundary node. Very small acoustic pressure fluctuation, with same frequency as that of Karman vortex street, is compared with the pressure fluctuation around a circular cylinder. The acoustic sound' propagation velocity shows that acoustic approa ching the upstream, due to the Doppler effect in the uniform flow, slowly propagated. For the do wnstream, on the other hand, it quickly propagates. It is also apparently the size of sound pressure was proportional to the central distance $r^{-1/2}$ of the circular cylinder. The lattice BGK model for compressible fluids is shown to be one of powerful tool for simulation of gas flows.

  • PDF

Numerical Simulation of Shock Propatation by the Finite Difference Lattice Boltzmann Method

  • Kang, Ho-Keun;Tsutahara, Michihisa;Kim, Jeong-Hwan;Lee, Young-Ho
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.468-474
    • /
    • 2001
  • The shock process represents an abrupt change in fluid properties, in which finite variations in pressure, temperature, and density occur over a shock thickness which is comparable to the mean tree path of the gas molecules involved. The fluid phenomenon is simulated by using finite difference lattice Boltzmann method (FDLBM). In this research, the new model is proposed using the lattice BGK compressible fluid model in FDLBM for the purpose of shortening in calculation time and stabilizing in simulation operation. The numerical results agree also with the theoretical predictions.

  • PDF

격자볼츠만법을 이용한 장애물 월반 자유수면 시뮬레이션 (SIMULATION OF FREE SURFACE FLOW OVER TRAPEZOIDAL OBSTACLE WITH LATTICE BOLTZMANN METHOD)

  • 코르크마츠 엠라;정노택
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.79-85
    • /
    • 2014
  • An air-water free surface flow simulation by using the Lattice Boltzmann Method(LBM) has not been studied a lot compared with the done by the Navier-Stoke equation. This paper shows the LBM is as one of the application tools for the free surface movement over an obstacle. The Mezo scaled application tool has been developed with two dimensional and nine discretized velocity direction using conventional lattice Bhatnagar-Gross-Krook model. Boundary conditions of a halfway-based for solid wall and a kinematic-based for interface are adopted. A validation case with a trapezoidal shape bump to make a comparison between freesurface movements from computational results and experimental ones was described with grid size dependency.

차분격자볼츠만법에 의한 Edge음의 직접계산 (Direct Simulation of Edge Tones by the Finite Difference Lattice Boltzmann Method)

  • 강호근;김유택;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.671-677
    • /
    • 2003
  • Two-dimensional direct numerical simulation of the edge-tones by the finite difference lattice Boltzmann method (FDLBM) is presented. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. It is clarified that the sound wave generated in rather wide region and individual vortices do not affect the sound wave propagation.

  • PDF