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SIMULATION OF FREE SURFACE FLOW OVER TRAPEZOIDAL OBSTACLE 

WITH LATTICE BOLTZMANN METHOD
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An air-water free surface flow simulation by using the Lattice Boltzmann Method(LBM) has not been studied a 
lot compared with the done by the Navier-Stoke equation. This paper shows the LBM is as one of the application 
tools for the free surface movement over an obstacle. The Mezo scaled application tool has been developed with 
two dimensional and nine discretized velocity direction using conventional lattice Bhatnagar-Gross-Krook model. 
Boundary conditions of a halfway-based for solid wall and a kinematic-based for interface are adopted. A validation 
case with a trapezoidal shape bump to make a comparison between freesurface movements from computational 
results and experimental ones was described with grid size dependency.
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1. Introduction

Since its introduction in 1988[1], the lattice-Boltzmann 
method(LBM) has become one of the leading methods for 
computational fluid dynamics. In conventional fluid 
dynamics methods(CFD), nonlinear partial differential 
equations that characterize fluid flows solved on discrete 
elements, nodes, or volumes. In contrast, LBM uses 
fractious particles that stream along the given direction 
and collide at lattice point to characterize fluid flows. 
Having both a particle based structure and simplicity of 
formulation yields LBM crucial advantages, such as easy 
to implementation, adaptability on parallel processing 
systems[2] and handling with complex geometries.

In the computational domain, the particles placing at 
the grid nodes may be defined with distribution function 
that denotes probability of collection of particles at a 

given position, direction, and time. Hence, the distribution 
function acts as a representative for collection of particles. 
Using with the distribution function, macroscopic 
quantities, such as density, velocity, temperature and 
pressure, are able to obtain for each node.

Defining boundary conditions with regard to the 
problem has significant effect on LB simulations. Normal 
bounce-back conditions can be interpreted as either 
free-slip or non-slip boundary conditions[3]. Depending on 
the boundary description, either distribution reconstruction 
or distribution modification can be chosen. With 
distribution modification, the unknown distribution 
functions are obtained by some physical rules such as 
bounce-back rule, mass and momentum conservation law 
or their combination. In the case of curved boundaries, 
distribution modification approach need to be interpolated 
or extrapolated[4,5].

Inclined and complex boundary treatments have to be 
investigated significantly, especially when real life 
applications are subjected. To illustrate, free surface 
motion around offshore substructures is one of the hottest 
issues in ocean engineering. For this study, we expect to 
find impact of water to the jacket substructure of offshore 
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wind turbines. A jacket type of substructure consists of 
many inclined supporting structures.  

In this paper, using with the interpolation method for 
curved boundary conditions, generalized algorithm of 
inclined wall treatment that helps to get various results for 
different angles will be presented. The free surface pattern 
over a trapezoidal obstacle has been observed during two 
seconds, and the evolution of free surface level at three 
different locations has been calculated. Furthermore, 
computational results that have been obtained from scaled 
computational domain of dam break over an obstacle 
application were compared with experimental data[6].

2. Lattice Boltzmann Method

The Boltzmann equation modifying with the single 
relaxation time, named as Bhatnagar Gross Krook (BGK) 
model[7].



 ∙∇  


  (1)

where  defines particle velocity, defines relaxation time 
and defines the equilibrium distribution function.

In order to solve   numerically, Eq. (1) needs to be 
discretized in the velocity space by using a finite set of 
velocity vectors [8].




 ∙∇  


  

 (2)

The nine-velocity square lattice model, which is often 
referred to as the D2Q9 (2 dimension 9 discrete velocity) 
model (Fig. 1), has been widely used for simulating 
two-dimensional flows. In the D2Q9 model:

   

 ∼   cos   
sin    (3)

 ∼   cos   
sin   

denotes the discretized velocity vectors. The equilibrium 
distribution function for incompressible D2Q9 model is 
given below[9]

Fig. 1 Discrete velocities of the D2Q9 model
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The weighting factor given by

   i=0
   i=1-4                (5)
   i=5-8

In these expressions, the flow properties are defined as:

Flow density :    
 



 (6a)

Momentum :    
 



 (6b)

Discretizing Eq. (2) with the time step  [s] and the 
size of a LBM cell  [m] gives the lattice Boltzmann 
equation,

   

     
    (7)

where    , and   is a point in the discretized 
physical space.

3. Boundary Conditions

3.1 Boundary condition for straight wall

Implementing the bounce-back condition is very simple, 
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Fig. 2 Wall position at the end of fluid domain

easy and efficient. In the standard bounce-back scheme 
(bounce-back at nodes), the wall placed at the lattice 
nodes, i.e. =1 referred as a fraction of an intersected 
link in the fluid domain in Fig. 2.

   (8)

First order accuracy is provided by standard scheme, to 
obtain a second order accuracy in the bounce-back 
scheme, an improvement called halfway bounce-back (
=1/2) condition required[10,11]. Halfway bounce-back 
condition formulated as:

   
 (9)

where denotes after collision step, and  denotes 
opposite direction of I.

3.2 Boundary condition for inclined or curved wall

More realistic geometries i.e. curved or inclined 
geometries require high order accuracy. The difficulty for 
curved boundary, compared to that in straight boundary, are 
not only the boundary is not exactly located on the lattice 
point or in the middle but also the density or velocity 
cannot be obtained by conservation law like for the straight 
boundary. One of the interpolation methods[4] is used to 
get the unknown distribution functions coming from the 
curved boundaries. The philosophy behind this method is to 
apply bounce-back scheme plus the linear or quadratic 
interpolation for distribution function. In the proposed 
method, equations obtained by linear interpolation:

     
 

  

     for  ≥  (10a)

     
  



                for    (10b)

3.3 Free surface boundary condition

Interface cells are identified as a transition point 
between fluid to gas phase. In our numerical study, gas 
phase is omitted. Therefore, the treatment has to be 
presented to find out the boundary condition of interface 
cells, and to construct the missing distribution functions. 
This missing part can be accomplished by using 
atmospheric pressure of    . The atmospheric 
pressure exerts a certain force on the free surface and this 
force is equated by an opposite force coming from liquid 
side.

The missing distribution functions can be constructed 
for each local lattice directions. Assume that position x is 
an interface cell and position    is a gas cell, then 
the missing distribution function can be found through this 
equation[12]:

    
  

  

(11)

3.4 Algorithm of inclined wall

Prior to presenting the results of inclined wall treatment 
under free surface, the generalized algorithm must be 
clarified as shown in the following steps.

1. Determine the closest particle distribution function to 
boundary node for all discrete directions.

(a) Flag initialization for all nodes via defining new array 
bb; inside the obstacle for every discrete direction 
bb=1, outside the obstacle for every discrete direction 
bb=0.

(b) If (bb+fn) fn, it means fluid particles encounters 
obstacle.

2. If the fluid particle encounters the boundary node at 
next time step, calculate the values between boundary 
node and fluid node for each direction.

(a) According to discrete direction of particle, values have 
to be calculated via different formulation that derived 
from simple triangle geometrical rules.

(b) Related with derivation process, depending on Fig. 3 a 
couple of constant value has to be calculated such as, 

       (12)

where  sincos
   sinsin   (13)
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Fig. 3 Reference angles of triangle

 where i, j is the cartesian coordinates of the closest   
 point to the obstacle, and iobs is the starting point of  
 the obstacle on the x-axis.

(c) There are 3 discrete directions that encounter obstacle 
nodes. For velocity direction 8,1 and 4,

   × i=8       (14)

   
×   

i=1       (15)

    i=4       (16)

 According to values, modify the fluid particle’s 
bounced distribution function with interpolation 
equations.

4. Parametrization for LBM

In general the dynamic behavior of a fluid can be 
expressed through the Reynolds number. It provides an 
estimation of the importance of the non-viscous and the 
viscous forces. Furthermore all simulations with the same 
Reynolds number have a similar dynamical behavior. The 
higher the Reynolds number, the more turbulent the flow 
is. The Reynolds number is determined by the inflow 
velocity, the diameter of the largest obstacle and the 
kinematic viscosity. These are physical parameters, but for 
the LBM algorithm only dimensionless quantities are used. 
The calculations of dimensionless lattice quantities are 
shown below with a superscript on real values:

kinematic viscosity 





 


 :   




(17)

Fig. 4 Computational domain with trapezoidal obstacle

gravity  






 


           :  

 (18)

The relaxation time  can be calculated via following 
way:

 
 

(19)

It should be noted that  can get certain values for the 
accurate and stable results of LBM. The numerical 
simulation becomes unstable particularly when the  
values close to 0.5.

5. Application and Computational Domain Details

In this paper, dam breaking over an obstacle application 
has been taken into account. Computational domain size 
and obstacle position can be seen in the Fig. 4. The 
dimensions and position of obstacle are exactly same with 
respect to L referred in reference [6], but we have scaled 
our computational domain with the scale ratio of 1/80 due 
to the memory problem. After scaling the dimension, L 
value has become 0.001425 m. Computational resolution has 
been set up 3 different sizes. The table given below 
contains all the parameters calculated for each grid size.

In addition to the length scale, we had to match the 
time with experimental data for accurate results. In order to 
match the time scale, we had to find out non-dimensional 
values for time. We obtained non-dimensional value of time 
every 0.05 second, from 0 to 2 second as same as 
reference [6], via following equation:
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LBM 1 LBM 2 LBM 3
Grid size 600*600 400*400 200*200

Non-dim. gravity 0.0007 0.0011 0.002
Viscosity (m2/s) 1.00E-06 1.00E-06 1.00E-06

Time step (s) 9.5E-06 1.43E-05 2.85E-05
Relaxation time 0.82 0.71 0.61

Table 1 Parameters of simulations

Fig. 5 The percentage of total mass change

 


 (20)

where t* is non-dimensional time.
After obtaining non-dimensional values, we calculated 

our t values from same equation with the scaled L values. 
In other words, computational time was adapted to the 
experiment duration.

6. Comparative Results

Before showing the comparative results, mass 
conservation law has to be carefully investigated in order 
to simulate free surface flow. According to the equation 
21, mass variation was checked during the whole 
computational duration. 

 

   
× (21)

where δm is the change of mass,   is the initial 
mass and   is the initant mass calculated every 
time step.

Fig. 5 shows the percentage of the mass change with 
respect to the computational time based on equation 21 
as well as LBM 2 simulation conditions listed in table 1. 

(a) t=0.0s

(b) t=0.2s

(c) t=0.4s

(d) t=0.6s

(e) t=0.8s

(f) t=1.0s

Fig. 6 Free surface pattern comparision between experiment (left) 
and LBM 1 (right), from 0.0s (a) to 1.0s(f)
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At the beginning of the simulation, we can see there 
are some fluctuations. However, it converges to the 
initial value by time. The percentage of mass change 
fluctuated between 1.4% and 0.3%, and it converges 
to 0.75%. 

Following to the conservation of mass, we took the 
experimental results from reference [6] and compared 
them with the LBM results. Fig. 6 shows free surface 
motion comparison at every 0.2s based on LBM 2. 
From the Fig. 6(a) representing initial condition, LBM 
and experiment results are in good agreement. Due to 
the slope of trapezoidal obstacle, fluid flow reaches 
the similar maximum height on the right wall both in 
experiment and numerical result.

The dimensionless height of the free surface is 
shown by Fig. 7-9 during 2 second, including a 
numerical simulation reported by reference [6], LBM, 
and experimental data. Since we consider dam gate 
suddenly removed in LBM simulation, numerical 
simulation 1 data[6] is taken into account. Fig. 7 
illustrates the evolution of dimensionless height at the 
left wall of the computational domain, whereas Fig. 8 
and Fig. 9 illustrate at middle section of the obstacle 
and at the right wall of the computational domain, 
respectively. The computed results of LBM at left 
wall and right wall are overlapped with the 
experiment results. Small differences can be seen 
particularly in left wall free surface evolution, due to 
the gravitational force and the relaxation number 
effects. It should be noted that estimating fluid height 
at mid-point of obstacle needs new approach for both 
numerical study.

Fig. 7 and 9 also claims that increasing resolution 
results in more accurate results in terms of time. It 
can easily be seen that the first LBM simulation has 
more consistent results than the others. In Fig. 9, 
LBM 1 simulation has predicted the evolution of free 
surface nearly perfect by 1.4 second. 

From the comparative results, the performance of 
LBM has been evaluated. LBM can capture the free 
surface movement as similar as experiment results. 
The turbulence modelling might be taken into account, 
especially in order to capture splashing effect on the 
right wall. Generally in the case of right wall where 
is the most important part of the domain, the height 
of the fluid changing by time is well overlapped with 
experiment. Furthermore, the height of mid-section of 
obstacle can be achieved coherently by modeling a 
finite speed of gate opening[6].

Fig. 7 Instant free surface evolution of vertical position 
                    at the left wall

Fig. 8 Instant free surface evolution of vertical position 
                    at the mid-point of obstacle

Fig. 9 Instant free surface evolution of vertical position 
                    at the right wall

7. Conclusion

Lattice Boltzmann Method is applicable for the 
simulation of the free surface flow over solid obstacle. In 
this paper, we have proposed an algorithm for inclined 
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wall. This algorithm can be used for different angles of 
slope. It is clear that geometrical rules should be 
considered for the derivation process of values. The 
algorithm can be easily adapted inverse shape of obstacle. 
To do that, local discrete velocity vectors should be 
modified with respect to the obstacle position. Moreover, 
computational resolution has to be considered while 
calculating  values. 

To sum up, there are two main outcomes from this 
study. Firstly, the generalized algorithm for inclined 
boundaries can be used to impose inclined obstacles for 
LBM. Secondly, the free surface pattern is evaluated by 
LBM coherently. Finally, grid dependency has not changed 
the precision in terms of fluid height prediction.
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