• Title/Summary/Keyword: Lattice temperature

Search Result 918, Processing Time 0.032 seconds

Analysis on Self-Heating Effect in 7 nm Node Bulk FinFET Device

  • Yoo, Sung-Won;Kim, Hyunsuk;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • The analyses on self-heating effect in 7 nm node non-rectangular Bulk FinFET device were performed using 3D device simulation with consideration to contact via and pad. From self-heating effect simulation, the position where the maximum lattice temperature occurs in Bulk FinFET device was investigated. Through the comparison of thermal resistance at each node, main heat transfer path in Bulk FinFET device can be determined. Self-heating effect with device parameter and operation temperature was also analyzed and compared. In addition, the impact of interconnects which are connected between the device on self-heating effect was investigated.

Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model

  • Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2001-2006
    • /
    • 2009
  • Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.

Dissolution of Protons in Oxides

  • Norby, Truls
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.128-135
    • /
    • 1998
  • The paper gives a brief introduction to protonic defects and their chemistry, thermodynamics and transport in oxides. The temperature dependence of the equilibrium concentration of protons is illustrated and compared for different acceptor-doped oxides. The difficulties of saturating as well as emptying the oxides of protons are discussed. In order to illustrate the possibility of lattice relaxation of defects, a conceptual study is made of a case where the enthalpy of dissolution of protons(water) at the cost of oxygen vacancies is assumed dependent on the concentration of vacancies. It is shown how this changes the behavior of hydration curves vs temperature and water vapour pressure. finally, a discussion is given on the water uptake in heavily oxygen deficient oxides; how water uptake may affect order-disorder in the oxygen sublattice and eventually lead to defective, disordered or ordered oxyhydroxides or hydroxides of potential interest as intermediate temperature proton conductions.

  • PDF

A Study on Crystal Structure and Surface Morphology of Se Thin Film by Fabrication Condition (제작 조건에 따른 Se박막의 결정구조 및 표면형상에 관한 연구)

  • Park, Gye-Choon;Im, Young-Sham;Chung, Hae-Duck;Lee, Jin;Chung, In-Sung;Kim, Jong-Uk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.331-334
    • /
    • 1998
  • Crystal structure and surface morphology of Se thin film fabricated by EBE method had been studied. Se thin film was deposited with amorphous structure until substrate temperature of l00$^{\circ}C$. But Se thin film was grown with monoclinic structure at substrate temperature af over 150$^{\circ}C$, and its lattice constant of a, b and c was 12.76${\AA}$, 9.15${\AA}$ and 10.41${\AA}$ respectively. Also, after heat-treatment at 150。 for 15 min with substrate temperature of l00。, amorphous Se was proved to be hexagonal structure, and its lattice constant of a and c was 4.27${\AA}$ and 4.83${\AA}$ respectively.

  • PDF

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

Nuclear Magnetic Resonance Study of 23Na in NaMgCl3 Single Crystal (NaMgCl3 단결정 내의 23Na 원자핵에 대한 핵 자기 공명 연구)

  • Yeom, Tae Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.185-188
    • /
    • 2015
  • We have investigated nuclear magnetic resonance of $^{23}Na$ nucleus in $NaMgCl_3$ single crystal in the temperature range 200 K~410 K using FT-NMR spectrometer. The spin-lattice relaxation times $T_1$ of $^{23}Na$ nucleus residing at cubic symmetry in the host crystal was measured as a function of temperature. The $T_1$ of $^{23}Na$ nucleus decreased with increasing temperature. The nuclear spin-lattice relaxation rate $1/T_1$ of $^{23}Na$ in $NaMgCl_3$ single crystal was proportional to the temperature T. This behavior is explained with the characteristic feature of the direct process between the nuclear spins and single phonon, $1/T_1$ being proportional to the absolute temperature. The activation energy calculated was $E_a=4.82J/mol$.

Structural and Morphological Changes of Co Nanoparticles and Au-10at.%Pd Thin Film Studied by in Situ Heating in a Transmission Electron Microscope

  • Ji, Yoon-Beom;Park, Hyun Soon
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.208-213
    • /
    • 2017
  • The microstructural changes in Co nanoparticles and an Au-10at.%Pd thin film have been investigated using an in situ heating holder with a micro-electro-mechanical system (MEMS). In Co nanoparticles, two phases (face-centered cubic and hexagonal close-packed crystal structures) were found to coexist at room temperature and microstructures at temperatures, higher than $1,000^{\circ}C$, were observed with a quick response time and significant stability. The actual temperature of each specimen was directly estimated from the changes in the lattice spacing (Bragg-peak separation). For the Au-10at.%Pd thin film, at a set temperature of $680^{\circ}C$, the actual temperature of the sample was estimated to be $1,020^{\circ}C{\pm}123^{\circ}C$. Note that the specimen temperature should be carefully evaluated because of the undesired effects, i.e., the temperature non-uniformity due to the sample design of the MEMS chip, and distortion due to thermal expansion.

Dielectric Properties of SCT Ceramics with the Sintering Temperature and the Thermal Treatment Time (소결온도와 열처리시간에 따른 SCT 세라믹스의 유전특성)

  • Gang, Jae-Hun;Choe, Un-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.11
    • /
    • pp.539-543
    • /
    • 2001
  • ln this paper, the $Sr_{l-x}Ca_xTiO_3(0\leqx\leq0.2)-based$ grain boundary layer ceramics were fabricated to measure dielectric properties with the sintering temperature and the thermal treatment time. The sintering temperature and time were $1420~15206{\circ}C$, 4hours, and the thermal treatment temperature and time of the specimen were $l150^{\circ}C$, 1, 2, 3hours, respectively. The structural and the dielectric properties were investigated by SEM, X-ray, HP4194A and K6517. The average grain size was increased with increasing the sintering temperature, but it decreased up to 15mo1% with increasing content of Ca. X-ray diffraction analysis results showed that all specimens were the cubic structure, and the main peaks were moved to right and the lattice constant were decreased with increasing content of Ca. The appropriate thermal treatment time and temperature of CuO to obtain dielectric properties of $\varepsilon_r>50000,\; tan \delta<0.05\; and \;\DeltaC<\pm10%$ were 2hrs and $l150^{\circ}C$, respectively.

  • PDF

Temperature Dependence of the Gain Spectrum of a Quantum Well Laser (양자우물 레이저의 이득 곡선의 온도 의존성)

  • 김동철;유건호;박종대;김태환
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.302-309
    • /
    • 1995
  • We desinged a lattice-matched InGaAs/lnGaAsP quantum well laser that lases at $1.55{\mu}m$ at room temperature, and calculated the gain spectrum as a function of injected carrier density and temperature. For the calculation of band structures and momentum matrix elements, we used a transfer JIlatrix method based on a block-diagonalized 8x8 second-order Ii$.$ P Hamiltonian. This lattice-matched quantum well lases in transverse electric mode. As the temperature increases, the lasing wavelength gets longer, the transparency carrier density increases, and the differential gain is reduced. The temperature dependence of the gain spectrum comes from the temperature dependence of the band structure and that of the Fermi function, and the latter contributes dominantly.nantly.

  • PDF

A study on electrical characteristics of ceramics capacitor for temperature compensation (온도보상용 세라믹 커패시터의 전기적 특성에 관한 연구)

  • 홍경진;정우성;김태성;이은학;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.640-647
    • /
    • 1995
  • In this study, the BaTiO$\sub$3/ capacitor add to MnO$\sub$2/ like depressor and shifter were investigated for temperature or voltage compensation by structural and electrical analysis. The relative density of BCTM, generating poly crystall and formation of lattice defect, has a 90[%] over as the CaTiO$\sub$3/ come out to control grain size. The current density of BCTM2 increased non-ohmic in high-electric field but that BCTM3 and BCTM4 had a few changing. The BCTM3 and BCTM4 unformated grain boundary shown temperature compensation properties, so that the dielectric constant was low value. The curie point was near 140[.deg. C] in BCTM1 and BCTM4, but BCTM3 and BCTM4 not shown the curie point. It is found that the charging energy of BCTM4 was changed 6[%] according to rising temperature from room temperature to 417[K]. The formation of BaMnO$\sub$3/ was low dielectric constant to change frequency and temperature.

  • PDF