Browse > Article
http://dx.doi.org/10.4191/KCERS.2007.44.8.412

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon  

Han, Joo-Hwan (School of Materials Science and Engneering, Yeungnam University)
Publication Information
Abstract
The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.
Keywords
Melting; Liquid; Molecular dynamics; Crystal; Surface;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. R. Phillpot, S. Yip, and D. Wolf, 'How Do Crystals Melt?,' Computers in Physics, Nov/Dec 20-31 (1989)
2 F. Shimizu, H. Kimizuka, H. Kaburaki, J. Li, and S. Yip, 'Parallel Molecular Dynamics Simulation on Elastic Properties of Solid Argon,' Proceedings of the Fourth International Conference on Supercomputing in Nuclear Applications, September 4-7, Tokyo, Japan, 2000
3 Y. Zhou and X. Jin, 'The Analytical Theory of Bulk Melting II: Variational Method Solution in the FCC Crystal,' arXiv:cond-mat/0405488 (2004)
4 L. Gomez, A. Dobry, Ch. Geuting, H. T. Diep, and L. Burakovsky, 'Dislocation Lines as the Precursor of the Melting of Crystalline Solids Observed in Mote Carlo Simulations,' Phys. Rev. Lett., 90 [9] 095701-1-4 (2003)   DOI   ScienceOn
5 S. Sorkin, 'Point Defects, Lattice Structure and Melting,' MS in Physics Thesis, Israel Institute of Technology, Hifa, 2005
6 M. Ross, 'Generalized Lindemann Melting Law,' Phys. Rev., 184 [1] 233-42 (1969)   DOI
7 K. F. Herzfeld and M. G. Mayer, 'On the Theory of Fusion,' Phys. Rev., 46 995-1001 (1934)   DOI
8 R. A. Quinn and G. Goree, 'Experimental Test of Two- Dimensional Melting through Disclination Unbinding,' Phys. Rev. E, 64 051404-1-10 (2001)   DOI   ScienceOn
9 H. Kleinert and Y. Jiang, 'Defect Melting Models for Cubic Lattices and Universal Laws for Melting Temperatures,' Physics Letters A, 313 [1] 152-57 (2003)   DOI   ScienceOn
10 J. H. Jin, P. Gumbsch, K. Lu, and E. Ma, 'Melting Mechanisms at the Limit of Superheating,' Phys. Rev. Lett., 87 [5] 055703-1-4 (2001)   DOI   ScienceOn
11 S. Nose and F. Yonezawa, 'Isothermal-Isobaric Computer Simulations of Melting and Crystallization of a Lennard- Jones System,' J. Chem. Phys., 84 [3] 1803-14 (1986)   DOI
12 R. M. Cotterill, E. J. Jensen, and W. D. Kristensen, 'Melting: Theories and Recent Computer Simulations' pp.405- 39 in Anharmonic Lattices Structural Transitions and Melting. Ed. By T. Riste, Noordhoff International Publishing, a division of A. W. Sijthoff International Publishing Company, Netherlands, 1974
13 R. W. Cahn, 'Melting from within,' Nature, 413 [11] 582- 83 (2001)   DOI   ScienceOn
14 R. W. Cahn, 'Crystal Defects and Melting,' Nature, 273 [15] 491-92 (1978)
15 M. Born, 'Thermodynamics of Crystals and Melting,' J. Chem. Phys., 7 591-603 (1939)   DOI
16 R. G. D. Valle and E. Venuti, 'Quasi Harmonic Lattice Dynamics and Molecular Dynamics Calculations for the Lennard-Jones Solids,' Phys. Rev. B, 58 206-12 (1998)   DOI
17 J. F. van der Veen, 'Melting and Freezing at Surfaces,' Surface Science, 433-435 1-11 (1999)   DOI   ScienceOn
18 G. Borelius, 'Changes of State of Simple Solid and Liquid Metals,' Solid State Phys., 6 65-94 (1958)   DOI
19 A. R. Ubbelohde (Ed.), Melting and Crystal Structure, pp.88-134, Oxford University Press, Oxford, England, 1965
20 J. L. Tallon, W. H. Robinson, and S. I. Smedley, 'A Melting Criterion Based on the Dilation Dependence of Shear Moduli,' Nature, 266 [24] 337-38 (1977)   DOI
21 L. Pietronero and E. Tosatti, 'Surface Theory of Melting,' Solid State Communications, 32 255-59 (1979)   DOI   ScienceOn
22 R. W. Cahn, 'Melting and the Surface,' Nature, 323 [23] 668-69 (1986)   DOI
23 J. W. M. Frenken and J. F. van der Veen, 'Observation of Surface Melting,' Phys. Rev. Lett., 54 [2] 134-37 (1985)   DOI   ScienceOn
24 R. M. Goodman and G. A. Somorjai, 'Low-Energy Electron Diffraction Studies of Surface Melting and Freezing of Lead, Bismuth, and Tin Single-Crystal Surfaces,' J. Chem. Phys., 52 [12] 6325-31 (1970)   DOI
25 J.-H. Han and D.-Y. Kim, 'Models of Melting and Liquid Structure Based on Rotationally Free Atomic Clusters,' Acta Materialia, 51 5439-45 (2003)   DOI   ScienceOn