Browse > Article
http://dx.doi.org/10.5012/bkcs.2009.30.9.2001

Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model  

Lim, Kyung-Hee (School of Chemical Engineering and Materials Science, Chung-Ang University)
Publication Information
Abstract
Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.
Keywords
Critical micelle concentration; Thermal behavior; Flory-Huggins model; Lattice theory; Heat capacity change of micellization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Evans, D. F.; Wennerstrom, H. The Colloidal Domain, where Physics, Chemistry, Biology, and Technology Meet; VCH: 1994
2 Tanford, C. Hydrophobic Effects; John Wiley and Sons. Inc: 1980
3 Poland, D. C.; Schraga, H. A. J. Phys. Chem. 1965, 69, 2431   DOI
4 Nemethy, G.; Schraga, H. A. J. Phys. Chem. 1962, 66, 1773   DOI
5 Miller, D. D.; Magid, L. J.; Evans, D. F. J. Phys. Chem. 1990, 94, 5921   DOI
6 Becher, P. Nonionic Surfactants; Schick, M. J., Ed.; Marcel Dekker: New York, 1967; Chapter 15
7 Flockhart, B. D. J. Colloid Interface Sci. 1961, 16, 484   DOI   ScienceOn
8 Stead, J. A.; Taylor, H. J. J. Colloid Interface Sci. 1969, 30, 482   DOI   ScienceOn
9 Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2004, 235, 121   DOI   ScienceOn
10 Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189, 113   DOI   ScienceOn
11 Lim, K.-H. Manuscript in Preparation, 2009a
12 Muller, N. Langmuir 1993, 9, 96   DOI
13 Tomasic, V.; Chittofrati, A.; Kallay, N. Colloid Surf. A 1995, 104, 95   DOI   ScienceOn
14 Koningsveld, R. Br. Polym. J. 1975, 7, 435   DOI   ScienceOn
15 Koningsveld, R. Adv. Colloid Interface Sci. 1968, 2, 151   DOI   ScienceOn
16 Kresheck, G. C.; Hargraves, W. A. J. Colloid Interface Sci. 1974, 48, 481   DOI   ScienceOn
17 Chen, L.-J.; Sheu, Y.-H.; Li, P.-J. J. Phys. Chem. 2004, 108, 19096   DOI   ScienceOn
18 Kang, K.-H.; Lim, K.-H. Kor. Chem. Eng. Res. 2008, 46, 824
19 Kim, H.-U.; Lim, K.-H. Bull Korean Chem. Soc. 2003, 24, 1449   DOI   ScienceOn
20 Lim, K.-H.; Kang, K.-H.; Lee, M. J. J. Kor. Ind. Eng. Chem. 2006, 17, 625
21 Lim, K.-H. Manuscript in Preparation, 2009b.
22 Lim, K.-H. Statistical Thermodynamics; Hantee Media, Seoul, Korea, 2008
23 Kim, H.-U. Ph. D. Dissertation, Chung-Ang University, Seoul, Korea, 2002
24 La Mesa, C. J. Phys. Chem. 1990, 94, 323   DOI
25 Stasiuk, E. N. B.; Schramm, L. L. J. Colloid Interface Sci. 1996, 324, 178
26 Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, $4^{th}$ ed.; Butterworth-Heinemann: Oxford, 1996
27 La Mesa, C.; Ranieri, Z. A.; Terenzi, M. J. Surface Sci. Tech. 1990, 6, 151
28 Moroi, Y. Micelles, Theoretical and Applied Aspects; Plenum, 1992
29 Shaw, D. J. Introduction to Colloid and Surface Chemistry, $4^{th}$ ed.; Butterworth: 1991; p 91