• Title/Summary/Keyword: Lateral dynamics

Search Result 241, Processing Time 0.027 seconds

Corner Braking Test and Simulation for Development of VDC System (VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션)

  • 이창노;박혁성;김영관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

Steering Control of Differential Brake System using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차동 브레이크 시스템의 조향제어)

  • 윤여흥;제롬살랑선네;장봉춘;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.233-237
    • /
    • 2002
  • Vehicle Dynamics Control(VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC. In order to help the car to turn, a yaw moment can be achieved by altering the left/light and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since Fuzzy logic can consider the nonlinear effect of vehicle modeling, Fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

  • PDF

suspension dynamics of HDD for high track density (고트랙밀도 HDD 서스펜션의 동특성 해석)

  • Kim, Chung-Joo;Chun, Jeong-Il;Byun, Yong-Kyu;Ro, Kwang-Choon;Chung, Chung-Choo;Jeong, Tae-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1885-1895
    • /
    • 1997
  • As track density needs to increase to the order of 10, 000 tpi, the suspension has become a critical component in hard disk drives. One of the main obstacles to attain high track density is the structural resonances of the suspension in lateral direction. We investigate the suspension dynamics through the experimental modal analysis and the finite element method. An LDV (Laser Doppler Vibrometer) is employed to measure the response of the suspension which is excited by a shaker and an inpulse hammer for the free condition and the loaded condition, respectively. After comparing the experimental and numerical results, we study how the initial geometry of the bend region affects the suspension dynamics. It is found that the natural frequency of the sway mode decreases as the bend ratio and the bend angle increase. The shape of torsional mode changes as the mass of a slider increases, resulting in a local decrease in the natural frequency.

Active Handling Control of the Differential Brake System Using Fuzzy Controller (퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어)

  • 윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

Intelligent Attitude Control of an Unmanned Helicopter

  • An, Seong-Jun;Park, Bum-Jin;Suk, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.265-270
    • /
    • 2005
  • This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. Simulation results show that the proposed Neuro-PD control system demonstrates better performance.

  • PDF

Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle

  • Schwab A. L.;Meijaard J. P.;Papadopoulos J. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.292-304
    • /
    • 2005
  • In this paper we present the linearized equations of motion for a bicycle as a benchmark. The results obtained by pencil-and-paper and two programs are compared. The bicycle model we consider here consists of four rigid bodies, viz. a rear frame, a front frame being the front fork and handlebar assembly, a rear wheel and a front wheel, which are connected by revolute joints. The contact between the knife-edge wheels and the flat level surface is modelled by holonomic constraints in the normal direction and by non-holonomic constraints in the longitudinal and lateral direction. The rider is rigidly attached to the rear frame with hands free from the handlebar. This system has three degrees of freedom, the roll, the steer, and the forward speed. For the benchmark we consider the linearized equations for small perturbations of the upright steady forward motion. The entries of the matrices of these equations form the basis for comparison. Three diffrent kinds of methods to obtain the results are compared : pencil-and-paper, the numeric multibody dynamics program SPACAR, and the symbolic software system Auto Sim. Because the results of the three methods are the same within the machine round-off error, we assume that the results are correct and can be used as a bicycle dynamics benchmark.

Robust Steering Control with Side Slip and Yaw Damping Compensation Using Time Delay Control (TDC 제어를 이용한 측면슬립 및 댐핑보상 강성제어)

  • Lee, Seon Bong;Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.10-15
    • /
    • 2019
  • In this paper, we report a robust steering control using time delay control for the vehicle dynamics variation due to tire/road contact condition variation, the lateral disturbance force due to the side wind, and the yaw disturbance moment due to the difference between the left and right tires' pneumatic pressure. We controlled the side slip and yaw damping compensation for rapid steering at the high velocity of the vehicle. Based on the developed control, the driver can only consider the desired path without concerning on the vehicle dynamics variation, disturbances, and undesired side slip and yaw oscillations. Simulation results show that robustness from the vehicle dynamics variation and disturbances was achieved by using the developed time delay control. We evaluated the side slip and yaw damping compensation capability for the rapid steering at the high velocity of the vehicle in the cases of three control methods.

Reduction of Computing Time in Aircraft Control by Delta Operating Singular Perturbation Technique (델타연산자 섭동방법에 의한 항공기 동력학의 연산시간 감소)

  • Sim, Gyu Hong;Sa, Wan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.39-49
    • /
    • 2003
  • The delta operator approach and the singular perturbation technique are introduced. The former reduces the round-off error in the numerical computation. The latter reduces computing time by decoupling the original system into the fast and slow sub-systems. The aircraft dynamics consists of the Phugoid and short-period motions whether its model is longitudinal or lateral. In this paper, an approximated solutions of lateral dynamic model of Beaver obtained by using those two methods in compared with the exact solution. For open-loop system and closed-loop system, and approximated solution gets identical to the exact solution with only one iteration and without iteration, respectively. Therefore, it is shown that implementing those approaches is very effective in the flight dynamic and control.