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Abstract:  This paper presents a new attitude stabilization and control of an unmanned helicopter based on neural network 
compensation. A systematic derivation on the dynamics of an unmanned small-scale helicopter is performed. Combined 
rotor-fuselage-tail dynamics is derived in body-fixed reference frame with its origin at the C.G. of the helicopter. And the resulting 
nonlinear equation of motion consists of 6-DOF air vehicle dynamics as well as the rotor flapping and engine torque equations. A 
simulation model was modified using the existing simulator for an unmanned helicopter dynamic model, which reflects the 
unmanned test helicopter(CNUHELI). The dynamic response of the refined model was compared with the flight test data. It can be 
shown that a good coincidence was accomplished between the real unmanned helicopter system and the mathematical model. This 
dynamic model was linearized for classical controller design using small perturbation method. A Neuro-PD control system was 
designed for both longitudinal and lateral flight modes, and the results were compared with the PD-only control response. 
Simulation results show that the proposed Neuro-PD control system demonstrates better performance. 
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1. INTRODUCTION 
 
Unmanned helicopters are emerging as an alternative to the 
conventional fixed-wing UAVs(Unmanned Aerial Vehicles) 
due to its superior flight characteristics: vertical take-off and 
landing in addition to the hovering capability. Various 
applications for unmanned helicopters such as Firescout and 
R-max include aerial photography, agricultural use as well as 
surveillance and reconnaissance missions. Domestic and world 
market revenue for this type of UAVs is growing in both 
military and commercial field, which activates a growing 
research momentum in various universities shown in Fig. 1[1]. 
However, development of a fully autonomous unmanned 
helicopter requires powerful flight control system because the 
airframe has higher order nonlinear dynamic characteristics 
caused by the main rotor, fuselage and tail rotor. This complex 
dynamics should be overcome by the control system, which 
accommodates various kind of nonlinearity and atmospheric 
disturbance. In this paper, a blended classical control theory 
and neural network compensation is studied for the attitude 
control of an unmanned helicopter. In recent years, classical 
control theory has been successfully applied to general class of 
fixed-wing UAVs due to its simple and efficient structure. It 
also pertain good physical meaning with respect to flight 
dynamics. However, it is not an easy job to apply the classical 
control theory to the helicopter directly, and there should be a 
certain type of additional compensation. It is also well known 
that the neural network control can be effectively applied to a 
variety of highly nonlinear systems[2-3]. 
Based on the assumption that the main rotor inflow is steady 
and uniform, an iterative method was adopted to calculate the 
thrust coefficients of the rotor in order to derive the dynamic 
equations of motion of an unmanned subscale helicopter. 
Flapping dynamics is represented as a Fourier series on the 
blade azimuth angle. The deflection of swash plate causes the 
change of cyclic pitch angle resulting in the coupled second 

order differential equations. The overall equations are derived 
on the body coordinate frame.  
In this paper, a Neuro-PD control system was designed for 
both longitudinal and lateral flight modes. Control gains of a 
classical attitude stabilizer for an unmanned helicopter are 
updated each time. Therefore, outputs of the neural network 
are proportional, derivative gains that feedback the attitude 
errors in both longitudinal and lateral motion. A neural 
network emulator was used to provide Jacobian, which was 
tuned online after pre-learning.  
Numerical simulations were demonstrated to validate the 
performance of the proposed Neuro-PD controller for the 
identified system model. The weights of the neural network 
converge within a second after some transients. The result also 
verified that the gains of the designed classical control system 
can be tuned in one step using the neural network 
compensation. The computational time for implementation of 
this algorithm is allowable so that it can be used for future 
flight test.  
 

 
Fig. 1 Research Activities on Unmanned Helicopter in Universities 

 

 
2. EQUATION OF MOTION FOR AN 

UNMANNED HELICOPTER 
 
Dynamic modeling of large helicopters that have articulated 
rotor blades are highly complicated since each blade has 
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individual degree of freedom. However,  the equation can be 
simplified for small unmanned helicopters if we consider only 
the dynamics of rotor system with respect to the airframe. The 
speed of rotor is assumed constant and the coordinate system 
can be shown in Fig. 2. Under this assumption integrated 
dynamics of the unmanned helicopter can be expressed as Eqs. 
(1)~(12)[4]. 

 
Fig. 2 Moments and force acting on helicopter 
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Aerodynamic loads generated by the rotor can be derived in 
the hub-wind coordinate system, and then 
coordinate-transformed into the hub-mast frame. the 
aerodynamic components on hub-mast axes are again 
transformed into the body frame, and they consist the force 
and moment for the construction of the whole equation of 
motion. Flapping dynamics of the main rotor and 

aerodynamics of the main/tail rotors are calculated on 
hub-wind frame. Similarly, aerodynamic components of the 
fuselage and stabilizer are added. Thrust and torque are 
calculated on the wind-axes, and they are converted into the 
body frame. From MBC(Multi-Blades Coordinates), the 
longitudinal and lateral flap equations of blades can be 
represented as [5]  

FKC =+′+′′ βββ                 (13) 

where ( )’ with respect to an azimuth angle is defined as  
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where means the hub-wind axes, hw() 0θ is the collective 

pitch angle, cw1θ is the longitudinal cyclic pitch angle, 

sw1θ is the lateral cyclic pitch angle and twθ
is the blade twist 

angle. µ is the advance ratio and zµ is the vertical 

component of normalized velocity. 0λ is the uniform inflow 

component, cw1λ and sw1λ are the first harmonic inflow 
components. The normalized angular velocity components are 
written as  

Ω
= hw

hw
pp

,  Ω
= hw

hw
qq

                              (18) 
The flap equations of conventional helicopters are reduced by 
the following assumption for RC helicopters.  
        a. The inflow is uniform  
        b. Blades have no twist.  

    c. Flap equations are approximated to 1st order  
derivative equations.  

      d. The rotor speed is constant.  
    e. Higher order terms are ignored.  

 
In general, it is shown that the stabilizer bar of the RC 
helicopter augments rotor control inputs and flap equations of 
the stabilizer bar can be derived from simplified flap equations 
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of blades as  

)( FKC +Ω−= ββ&                   (19) 
Using the stabilizer bar effect, flap equations of blades can be 

written as  

)( βββ sKFKC & ++Ω−=                   (20) 

where is the flap response gain 

3. A NEURO-PD ATTITUDE CONTROL 
 

 this paper, a combined classical PD controller and neural 

1 Back Propagation Algorithm 
nd of learning method for 

follo

sK of the stabilizer bar.  

 

In
network compensation are used for the attitude compensation 
of the unmanned helicopter. Back propagation algorithm is 
used to update the weight of the multi-layer neural network. A 
single hidden layer is used and sigmoid function is used for 
each node. It is well known that the neural network is based on 
the simulation of the human brain consisting of neuron and 
connecting structure. Learning is a major process of updating 
weights and biases at each step. Automatic flight control 
system of high-performance aircraft, flight path simulation, 
and performance enhancement of the automatic flight are three 
major applications for aeronautical use of the intelligent neural 
network based control.  
  
3.
Back propagation algorithm is a ki
multilayered perception that updates the weights of each layer. 
The weights are to be determined to minimize the error signal 
and performance measure on the basis of the delta-rule and 
gradent decent method. Therefore, this algorithm can be 
applied on condition that the nonlinear neural network 
function can be differentiable. Let the input layer, hidden layer, 
output layer, number of inputs, number of hidden layers and 
number of neurons on output layer be I, j, k, I

N , BN  and 

ON , respectively. Then, the output can be r d as 

ws[6]: 
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Fig. 3 Three-layered Neural Network 
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 Output value can be expressed by the weights and biases of 

y

the neural network as can be seen in Eq.(21). An error 
between the output from the neural network and the desired 

output is a direct difference: 

dkk ye −= k                                        (22) 

The performance index to minimize the generated error can be 
shown below 

∑=
k

keE 2

2
1                                       (23) 

Partial differentiation of the above performance index with 
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error, which means the direction of change that minimizes the 
error in the next step. Error change rate of the output layer can 
be determined by the delta-rule as follows: 
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Sum of weights on the output layer is included in the delta on 
hidden layer. This means that the opposite sides of the neural 
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network, and the error on the hidden layer can be expressed as 
a sum of the weights on the output layer. As a result, the 
weights can be updated if we know the deltas on both output 
layer and hidden layer, hence we can update the neural 
network that have multi layers and differentiable node 
functions.   
Biases on ou
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. MODEL IDENTIFICATION AND SIMULATION 

ynamic modeling of the CNUHELI unmanned helicopter 
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D
developed in Chungnam national university was performed 
using the existing unmanned helicopter modeling data. The 
modification was based on a laboratory-based ground test. 
Configuration parameters of the CNUHELI were summarized 
in Table 1. Several experiments were conducted to extract the 
moment of inertia of the unmanned helicopter. An alternative 
geographic modeling was conducted using CATIA, and the 
result was used in the simulation.  

 
Table 1 Configuration Param

3
Disadvantage of the clas
impossible to obtain the desired output for highly nonlinear 
and complicated system such as unmanned helicopters, nor it 
can give good performance in the event of severe external 
disturbance of variation of internal parameters. Neuro-PD 
control compensates the PD control gains at each sampling 
step. Two methods are used for Neuro-PD control: with and 
without an emulator. A neural network emulator provides the 
Jacobian information of the system to learn the network in the 
former one. Two neural networks are used: the emulator is 
learned off-line, and the neural network is tuned on-line. In 
this case, a convergence rate of each neural network is of 
critical issue. When the convergence rate is different, the 
neural network emulator may provide inaccurate Jacobian 
information. In order to overcome this, a modified method is 
used in this paper, which is shown in Fig. 4. 
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ontrol stick command is directly interfaced to the simulation 
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Fig.4  Neural PID Controller without Jacobian  
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program so that the manual flight can be done online. The 
nonlinear dynamics of the CNUHELI was linearized to design 
a reference PD controller. A numerical perturbation was used 
to linearize the model. The linearized model was validated by 
comparing both responses in a finite time after actuating the 
model in hover condition. The linearized models for both 
longitudinal and lateral axes are shown below.  
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Dynamic simulation was performed for the linear model, using 
the simulink block diagram. A doublet command was applied 
as a reference input. A very sensitive pitch response was 
obtained for both longitudinal and lateral axis. Overall system 
response can be seen in Figs. 5-6.  

 
Fig.5 Longitudinal Response 

 

 
Fig.6 Lateral Response 

 
 

Fight model was identified to better the model matching 
between real system and mathematical modeling. Model 
parameters were revised to give more reasonable response 
with respect to flight test data. Manual flight data were 

obtained by the flight test. Pitch response of the linear model 
shows up to 5 times larger than the flight test data when the 
revision was made only on geometric data. A further 
investigation on the flapping dynamics revealed that the input 
influence parameter should also be identified to extract 
relevant data. Flapping dynamics can be expressed using the 
pitch rate, rotor speed and longitudinal excitation.   
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lon
Aδ : effective steady-state longitudinal gain from the  

cyclic input to mainrotor flap angle 

lat
Bδ : effective steady-state lateral gain from the cyclic input  

to main rotor flap angle 
                                         
Flight test data and identified model response were shown in 
Fig. 7, where we can see similar response for both pitch and 
roll motion.  
 

 
Fig.7(a) Linear Model and Flight Data Comparison   

 

 
Fig.7(b) Linear Model and Flight Data Comparison  

 
A classical control was applied at first, and an additional 
compensation was activated using the neural network designed 
in Sec. 3. 2 input variables and 10 hidden layer parameters 
with 2 output variables were used to compensate the PD 
control. Fig. 8 shows the overall longitudinal control scheme 
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for the attitude stabilization of the unmanned helicopter.  
 

 
Fig. 8  Longitudinal Neuro-PD Controller Block

 
The performance of the proposed Neuro-PD control system 
was compared with the conventional PID control. The same 
values on proportional and derivative gains were used for 5 
second duration of numerical simulation. The error between 
the output of the neural network and flight control command 
was selected as learning signal. Comparative simulation 
results for longitudinal and lateral cyclic input were shown in 
Fig. 9.  
 

 
Fig.9(a) Longitudinal Neuro-PD and PD Comparison  

     

 
Fig. 9(b) Lateral Neuro-PD and PD Comparison 

 
     
5. Conclusions 
 
 In this paper, a nonlinear simulation was performed based on 
the helicopter dynamic model. An attitude stabilization and 
control was implemented using the Neuro-PD control based 
on the identified linear model. Simulation results show that the 
neural network compensation can be used effectively to 

enhance the control performance of the unmanned helicopter. 
It is expected that the flight control performance of the 
existing automatic flight control system can be upgraded by 
just adding the neural network compensation. Future flight test 
on the robustness with respect to severe atmospheric 
disturbance is required for further validation of the proposed 
Neuro-PD control. An automatic take-off and landing 
experiment can be expected using the precise attitude 
stabilization. A more accurate and systematic model 
identification method is also a future research. All these 
efforts will expand the flight control regime on unmanned 
helicopters.  
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