DOI QR코드

DOI QR Code

Reduction of Computing Time in Aircraft Control by Delta Operating Singular Perturbation Technique

델타연산자 섭동방법에 의한 항공기 동력학의 연산시간 감소

  • Published : 2003.04.01

Abstract

The delta operator approach and the singular perturbation technique are introduced. The former reduces the round-off error in the numerical computation. The latter reduces computing time by decoupling the original system into the fast and slow sub-systems. The aircraft dynamics consists of the Phugoid and short-period motions whether its model is longitudinal or lateral. In this paper, an approximated solutions of lateral dynamic model of Beaver obtained by using those two methods in compared with the exact solution. For open-loop system and closed-loop system, and approximated solution gets identical to the exact solution with only one iteration and without iteration, respectively. Therefore, it is shown that implementing those approaches is very effective in the flight dynamic and control.

본 논문에서는 먼저 델타연산자 접근법과 섭동기법을 소개하였다. 전자는 수치연산에 있어서 round-off error를 줄여주고 후자는 시스템을 빠른 종속시스템과 느린 종속시스템으로 분리하여 연산시간을 줄여준다. 항공기의 동력학은 종방향 혹은 횡방향 모두 장주기(Phugoid)와 단주기 운동을 동시에 보여준다. 여기서는 경비행기 Beaver의 횡방향 모델에 섬동기법과 델타접슨법을 적용하여 얻는 근사치 해를 정확한 해와 비교하였다. 그 겨로가 개루프 시스템의 경우는 단 한번의 iteration을 시행하여 얻은 근사치 해가 정확한 해와 일치했고, 페루프 시스템의 경우는 iteration없이도 근사치 값이 정확한 해와 일치하였다. 이로써 제안된 방법들의 적용이 항공기 동력학 및 제어에 있어서 매우 유효함이 검증되었다.

Keywords

References

  1. Middleton, R. H., and Goodwin, G. C., "Improved finite word length characteristics in deigital control using delta oprators," IEEE Trans. on Automatic Control, Vol. 31, No.11, 1986, pp. 1015-1021. https://doi.org/10.1109/TAC.1986.1104162
  2. Middleton, R. H., and Goodwin, G. C., "Digital control and estimation: A unified approach," Prentice-Hall, 1990.
  3. Li, G., and Gevers, M., "Roundoff Noise Minimization using Delta-Operator Realizations," IEEE Trans. on Signal Processing, Vol. 41, 1993, pp.629-637. https://doi.org/10.1109/9.277251
  4. Li, G., and Gevers, M., "Comparative Study of Finity Wordlength Effects in Shift and Delta Operator parametrizations," IEEE Trans. on Automatic Control, Vol. 38, 1993, pp.803-807. https://doi.org/10.1109/9.277251
  5. Bouslimani, M., M'Saad, M. and Dugard, L., "Stabilizing Receding Horizon Control: A Unified Continuous/Discrete Time Formulation," Proceedings fo the 32nd Conference on Decision and Control, San Antonio, Texas, 1993, pp.1298-1303. https://doi.org/10.1109/78.193204
  6. Shim, K. H. and Sawan, M. E., "Linear Quadratic Regulator Design for Singularly Perturbed Systems by Unified Approach using Delta Operators," International Journal of Systems Science, Vol. 32, No. 9, September 2001, pp.1119-1125. https://doi.org/10.1080/00207720010017580
  7. Shim, K. H. and Sawan, M. E., "Near Optimal State Feedback Design for Singularly Perturbed Systems by Unified Approach using Delta Operators with an Aircraft Implementation", IEEE Conference on Decision and Control, Tampa, Florida, December 16-18, 1998.
  8. Shim, K. H. and Sawan, M. E., "A Study on Singularly Perturbed Open-Loop System by Delta Operator Approach", Transaction on Control, Automation and System Engineering, Vol. 3, No. 4, December 2001, pp 242-249.
  9. Chang, K. W., "Diagonalization mehod for a vector boundary problem of singular perturbation type," Journal of mathematical analysis and application, Vol.48, 1974, pp. 652-665. https://doi.org/10.1016/0022-247X(74)90138-3
  10. Chow, J. and Kokotovic, P. V., "Eigenvalue placement in two-time-scale systems," IFAC Symposium on Large Scale Systems, 1976, pp. 321-326.
  11. Kokotovic, Peter V., "A Riccati equation for Block diagonalization of ill-conditioned systems," IEEE Trans. on Automatic Control, Vol. 20, 1975, pp. 812-814. https://doi.org/10.1109/TAC.1975.1101089
  12. Kokotovic, P. V., Khalil, H., and OReilly, J., "Singular perturbation methodsin control analysis and design," Academic Press, Orlando, FL, 1986.
  13. Naidu, D. S., "Singular perturbation methodology in control systems," Peter Peregrinus, London, United Kingdom, 1988.
  14. Naidu, D. S., Rao, A. K., "Singular perturbation analysis of the closed-loop discrete optimal control system," Optimal Control Applications & Methods, Vol. 5, 1984, pp. 19-37. https://doi.org/10.1002/oca.4660050103
  15. Naidu, D. S. and Price, D. B., "Time-Scale Synthesis of a Closed-Loop Discrete Optimal Control System," Journal of Guidance, Vol.10, No.5, 1987, pp.417-421. https://doi.org/10.2514/3.20235
  16. Naidu, D. S. and Price, D. B., December "Singular perturbations and time scales in the design of digital flight control systems," NASA Technical Paper 2844, 1988.
  17. Mahmoud, M. S., "Order reduction and control of discrete systems," IEE PROC., Vol.129, Pt. D, No.4, 1982, pp.129-135. https://doi.org/10.1049/ip-d.1982.0026
  18. Mahmoud, M. S. and Singh, M. G., "On the Use of Reduced-order Models in Output Feedback Design of Discrete Systems," Automatica, Vol. 21, No.4, 1985, pp.485-489. https://doi.org/10.1016/0005-1098(85)90085-8
  19. Mahmoud, M. S., Chen, Y., and Singh, M. G., "Discrete two-time-scale systems," International Journal of Systems Science, Vol. 17, 1986, pp.1187-1207. https://doi.org/10.1080/00207728608926881
  20. Mahmoud, M. S., "Order reduction and control of discrete systems," IEE PROC., Vol.129, Pt. D, No.4, 1982, pp.129-135. https://doi.org/10.1049/ip-d.1982.0026
  21. Rauw, Marc, "FDC 1.2 - A SIMULINK Toolbox for Flight Dynamics and Control Analysis," Dutchroll Software, The netherlands, 1998.
  22. McLean, Donlad, "Automaric Flight Control Systems," Prentice Hall International(UK) Ltd, 1990.