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Benchmark Results on the Linearized Equations
of Motion of an Uncontrolled Bicycle

A.L. Schwab*
Laboratory for Engineering Mechanics, Delft University of Technology,

Mekelweg 2, NL-2628 CD Delft, Netherlands

J.P. Meijaard

School of MMME, The University of Nottingham, University,
Park, Nottingham NG7 2RD, United Kingdom
J. M. Papadopoulos
The Paper Converting Machine Company,
Green Bay, Wisconsin, USA

In this paper we present the linearized equations of motion for a bicycle as a benchmark. The
results obtained by pencil-and-paper and two programs are compared. The bicycle model we
consider here consists of four rigid bodies, viz. a rear frame, a front frame being the front fork
and handlebar assembly, a rear wheel and a front wheel, which are connected by revolute joints.
The contact between the knife-edge wheels and the flat level surface is modelled by holonomic
constraints in the normal direction and by non-holonomic constraints in the longitudinal and
lateral direction. The rider is rigidly attached to the rear frame with hands free from the hand-
lebar. This system has three degrees of freedom, the roll, the steer, and the forward speed. For
the benchmark we consider the linearized equations for small perturbations of the upright steady
forward motion. The entries of the matrices of these equations form the basis for comparison.
Three diffrént kinds of methods to obtain the results are compared : pencil-and-paper, the
numeric multibody dynamics program SPACAR, and the symbolic software system AutoSim.
Because the results of the three methods are the same within the machine round-off error, we

assume that the results are correct and can be used as a bicycle dynamics benchmark.
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1. Introduction

A variety of simple vehicles can be statically
unstable yet dynamically stable, for example a
skateboard plus rigidly attached rider, a tricycle
with raked steering axis, or a bicycle/motorcycle.
Of these the bicycle is the most interesting, yet
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the hardest to analyse correctly. As a result the
literature contains a great many flawed equa-
tions, and widespread qualitative explanations of
uncontrolled self-stability are inconsistent with
careful analyses.

It is the purpose of this paper to present ex-
haustively confirmed linearized equations of mo-
tion suitable for research or application. A se-
cond aim is to present a high-precision bench-
mark for the linearized governing equations for
a single clearly defined bicycle travelling at a
range of speeds. Alternative equation formula-
tions, or even non-linear simulation of a small
perturbation, can therefore be checked with con-
fidence.
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The study of bicycle and motorcycle dynamics
has attracted attention from mechanical engineers
such as Rankine (1869), Sommerfeld and Klein
(1897), Timoshenko (1948), Den Hartog (1948),
Neimark and Fufaev (1972), Kane (1975) and
many others also out of the engineering disci-
pline. Investigations have ranged from purely ad
hoc analyses to full non-linear computer simu-
lations.

The first publication of the full non-linear and
also the linearized equations of motion for an
upright uncontrolled bicycle was by Whipple
(1899) in 1899. His linearization was found to
be correct except for typographical errors. They
agree with Dohring (1955), with Neimark and
Fufaev (1972) (after correcting errors due to an
incorrect potential energy), with Sharp (1971)
(with a minor algebraic correction for the case
of knife-edge wheels), with the Ph.D. thesis by
Weir (1972), with Weir and Zellner (1978) (after
correcting a sign error), and with the equations
as derived by Hand (1988), and simplified by
Papadopoulos (1987). Moreover, Hand's work
also gives a detailed literature review. Correct
equations for more or less simplified models are
presented by Carvallo (1901), Klein and Som-
merfeld (1897), Timoshenko and Young (1948),
and Kane (1975). Other authors’ equations disa-
gree with these and with each other’s, or are so
complex in presentation that detailed comparison
was not practical.

2. Bicycle Model

The mechanical model of the bicycle consists
of four rigid bodies, viz. the rear frame with the
rider rigidly attached to it, the front frame being
the front fork and handle bar assembly and the
two knife-edge wheels.

These bodies are interconnected by revolute
hinges at the steering head between the rear frame
and the front frame and at the two wheel hubs. In
the reference configuration, all bodies are sym-
metric relative to the bicycle midplane. The con-
tact between the stiff non-slipping wheels and the
flat level surface is modelled by holonomic
constraints in the normal direction and by non-
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Fig. 1 Bicycle model together with the coordinate

system, the degrees of freedom, and the para-
meters

holonomic constraints in the longitudinal and
lateral direction. There is no friction, apart from
the idealized friction between the non-slipping
wheels and the surface, nor propulsion and no
rider control, the so-called hands free coasting
operation. These assumptions make the model
energy-conserving. In the reference position, the
global Cartesian coordinate system is located at
the rear-wheel contact point O, where the x-axis
points in the longitudinal direction of the bicycle
and the z-axis is directed downwards. Figure 1
shows the directions of the axes, where the ter-
minology used mainly follows the SAE recom-
mended practice as described in the report SAE-
J607e (2001), last revised in 1976.

The mechanical model of the bicycle has three
degrees of freedom : the roll angle ¢ of the rear
frame, the steering angle &, and the rotation 8,
of the rear wheel with respect to the rear frame.
The angles are defined as follows. The orienta-
tion of the rear frame with respect to the global
reference frame (O-xyz is given by a sequence
of three angular rotations: a yaw rotation, ¥,
about the z-axis, a roll rotation, ¢, about the
rotated x-axis, and a pitch rotation, # about the
rotated y-axis. These rotations are materialized
and depicted in Figure 4 by three hinges in series,
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@D, @ and @ mounted at the rear hub. The
steering angle & is the rotation of the front frame
with respect to the rear frame about the steering
axis. Due to the non-holonomic constraints there
are four extra kinematic coordinates which des-
cribe, together with the degrees of freedom, the
configuration of the system (Schwab and Mei-
jaard, 2003). The four kinematic coordinates are
taken here as the Cartesian coordinates x and y of
the rearwheel contact point, the yaw angle ¢ of
the rear frame, and the rotation ¢, of the front
wheel with respect to the front frame.

The dimensions and mechanical properties of
the benchmark model are presented in Table 1.

Table 1 Parameters for the benchmark bicycle from

Figure |
Parameter Symbol Value
Wheel base w 1.02 m
Trail t 0.08 m
Head angle a arctan (3)
Gravity g 9.81 N/kg
Forward speed v variable m/s
Rear wheel
Radius R 0.3m
Mass Mrw 2kg
M t
a5 MOMENS 1 4 Ay, Az)| (0.06, 0.12, 0.06) kegm?
of inertia .
Rear frame
Position
3,0, —0.
centre of mass (xlf, Yrss er) (0 3,0, -0 9) m
Mass My 85kg
Mass moments Bu 0 B 99 0 24
o By 0 11 0 |[kgm?
of inertia
Sym. Bz 2.8
Front frame
Position
centre of mass (%, Yirs 209) (09,0, —0.7)m
Mass Myyr 4kg
Mass moments Cix 0 Cx]||0.0546 0 —0.0162
- Cy 0 006 0 |kgm®
of inertia
Sym. Ce 0.0114
Front wheel
Radius Ry 0.35m
Mass Wyw 3kg
Mass moments 2
of inertia (Dxx, Dy, Dz) | (0.14, 0.28, 0.14) kgm

The system is symmetric about the vertical longi-
tudinal plane and the wheels are rotationally
symmetric about their axles. The mass moments
of inertia are given at the centre of mass of the
individual bodies and along the global xyz-axes.

3. Linearized Equations of Motion

This section gives an algorithmic interpreta-
tion of the linearized equations of motion for
the bicycle model under study as derived by
Papadopoulos (1987). The equations of motion
are obtained by pencil-and-paper using D’Alem-
bert’s principle and linear and angular mo-
mentum balances. They are expressed in terms of
small changes in the degrees of freedom ¢, the
rear frame roll angle, and &, the steering angle,
from the upright straight ahead configuration
$e=0, 8=0, at a forward speed of v=—0;Rns.

Let us consider the bicycle from Figure 1 and
Table 1. The subscripts used are: 7w for the
rear wheel, 7/ for the rear frame, ff for the front
frame, fw for the front wheel, f for the total sys-
tem, f for the front assembly which is the front
frame plus the front wheel, x ; ¥, and z are the
directions along the global xyz-axes, and A is
the direction of the steering axis pointing down-
ward. Then the algorithm is as follows. For the
system as a whole, calculate the total mass and
the corresponding centre of mass with respect to
the origin O as

W= Mg+ Wry + Mgy + Msw (1)
Xt = (XrfMrr + X peMgr + wiisw) [ M . (2)
2= (— RruMirw+ 20sMes +25Mzr— Rwttpw) [ me (3)

For the system as a whole, calculate the relevant
mass moments and products of inertia at the
origin O along the global axes as

Trx=Axxt Bxx+ Cex+Dxx+ mrwR%w

4
+ mrfzf«f + Wfoijff + Wlwa?w ( )
e =Bzt Cxz— MrrXrr2rs (5)

— MyrarrZss + M Rsw
Tzz=A2z+Bzz+ Cz (6)

+ D2+ mrfng + m)ffx,%f + 7’}’lfw1/l)2
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Now determine the same properties for the
front assembly, being the front frame and the
front wheel, as

Ms= My + Myw (7)
%= (Xsrtsr + wmpm) [ ms (8)
2r=(2gsMsr — Rrwmsw) | ms 9)

and calgulate the relevant mass moments and
products of inertia for the front assembly at the
centre of mass of the front assembly along the
global axes as

Fox=Cxxt+Dsx+myy (fo_2f>2

10
+ s (Rwt25)* (10)

Fra=Cra—mysr (Xsr—x7) (27— 27)
+ mfw(w —xs) (wa+2f)

Fzz:sz+Dzz+mff (Xff_Xf)z
+mp(w—2x5)"

(1)

(12)

Let A be the angle of the steering axis A= (sin(A),
0, cos(A)) T with the global z-axis in the vertical
plane,

A=n/2—a (13)

Calculate the perpendicular distance that the
centre of mass of the front assembly is ahead of
the steering axis,

u=(x,—w—t)cos(A) —Arsin(A) (14)

Calculate for the front assembly the relevant
mass moments and products of inertia along the
steering axis and the global axes at points where
they intersect as

FAA‘:Mfu2+Fxx Sll’l(/D z
+2F,;sin(A) cos(A) + Fzz cos ()2

Fu=—mysuzs+ Fexsin(A) + Fxz cos (1) (16)
Fre=msuxs+ Fesin(d) + Feecos(d)  (17)

(15)

Define the ratio of the mechanical trail (i.e. the
perpendicular distance that the front wheel con-
tact point is behind the steering axis) to the
wheelbase as

f=tcos(A)/w (18)

Calculate for the rear and the front wheel the
angular momentum along the y-axis divided by

the forward speed, together with their sum as

Sy=Ay/Rro (19)
Sy=Dyy/Rsw (20)
St:Sr+Sf (21)

Define a frequently appearing static moment term
as

SuZMfu+fMtXt (22)

Now the linearized equations of motion for the
bicycle expressed in the degrees of freedom q%=
(¢, )T have the form

Mg?+[Cl-v]q*+ [KO+K2-v*]q*=f¢ (23)

with a constant mass matrix, M, a “damping”
matrix, C1, which is proportional to the forward
speed v, and a stiffness matrix which has a con-
stant part, KO, and a part, K2, which is propor-
tional to the square of the forward speed. The
forces on the right-hand side, £¢, are the applied
forces which are energetically dual to the degrees
of freedom q? For the bicycle model the first
is M, the action-reaction roll moment between
the fixed space and the rear frame. In practice
such a torque could be applied by side wind, or
by ‘training wheels’ located at the rear wheel
hub, or by a parent teaching a child to ride by
applying either a pure rolling moment or a lateral
force. The second force is Ms, the action-reaction
steering moment between the rear frame and the
front frame. This is the torque that would be
applied by a rider’s hands, or a steering spring-
damper, or even an electronic controller. In the
case of an ordinary uncontrolled bicycle, both of
these moments are taken to be zero. The elements
of the mass matrix are

M(l, 1) szx

(24)
MQ )=M(1,2)
M2, 2)=Fu+2fFut/f*T:

The velocity-independent elements of the stiffness
matrix are
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KoQ1, 1) =gmz:
( )=—gSu
(25)
Ko(2, 1)=Ko(1, 2)
K0(2, 2) =—gS, sin{})

and the elements of the stiffness matrix to be
multiplied by the square of the forward speed are

K2(1, 1) =0
K2(1, 2) = (S: — msz:) cos (A /w
(26)
K2(2,1)=
K2(2, 2) =(Sy+Sssin{A) ) cos(A) /w

Finally, the “damping” matrix which is to be
multiplied by the forward speed is given by

C1(1,1)=0
CU(1, 2) =fS:+ Sy cos ()
+ Tz cos (A) /w—fmez: 27)
C1(2, 1)=—(fSe+Ss cos(A)
C1(2, 2)=Fycos(A)/w+f (Su+ Tz cos (A) / w)

4. Results

Substitution of the parameter values from Ta-
ble 1 results in the following values for the entries
in the mass matrix from (24),

M_[80.812 100 000 000 02, 2.323 431 426 235 49

| 2.323 431 426 235 49, 0.301 265 709 342 56} (28)

the constant stiffness matrix from (25),

—794.119 500 000 000, —25.739 089 291 258
o] oo

—25.739 089 291 258, —8.139 414 705 882

the stiffness matrix from (26) which is propor-
tional to the square of the forward speed

0, 76.406 208 759 656 57
K2—[ } (30)

" |0, 2.675 605 536 332 18

and finally the the “damping” matrix from (27)
which depends linearly on the forward speed

- 0, 33.773 869 475 930 10 (31)
—0.848 234 478 256 93, 1.706 965 397 923 87

4.1 Stability of the motion

The stability of the bicycle in the upright steady
motion at constant forward speed can be inves-
tigated by the homogeneous linearized equations
of motion from (23). We start with the usual
assumption of an exponential motion with respect
to time for the small variations in the degrees of
freedom q%=(¢ &) T which then takes the form
q®=q§ exp(At). Substitution into the linearized
equations of motion leads to an eigenvalue pro-
blem. For the bicycle model under study the char-
acteristic equation of this eigenvalue problem is
a polynomial in the eigenvalues A of order four.
The coefficients in this polynomial are themselves
polynomials in the forward speed v, since some
coefficients of the linearized equations of motion
have a linear or quadratic dependency on v. The
solutions of the characteristic polynomial for a
range of forward speeds are the root loci of the
eigenvalues A, which are shown in Figure 2. Ei-
genvalues with a positive real part correspond
to unstable motions whereas eigenvalues with a
negative real part result in asymptotically stable
motions. Complex conjugated eigenvalues give
rise to oscillatory motions. For the bicycle mo-
del there are two significant eigenmodes, called
capsize mode and weave mode. The capsize mo-
tion is a non-oscillatory motion in which, when
unstable, the bicycle just falls over like a capsi-
zing ship. The weave motion is an oscillatory mo-
tion in which the bicycle sways about the head-
ed direction. At very low speed, 0<2<0.5m/s,
there are two positive and two negative eigen-
values which correspond to an inverted pen-
dulum-like motion of the bicycle. Then at v=
0.693 713 m/s two real eigenvalues become iden-
tical and start forming a conjugated pair ; this is
where the oscillatory weave motion emerges. At
first this motion is unstable but at v,=4.301 611
m/s these eigenvalues cross the real axis in a Hopf
bifurcation and the weave motion becomes stable
until infinity. After this bifurcation the frequency
of the weave motion is almost proportional to the
forward speed. Meanwhile the capsize motion,
which was stable for low speed, crosses the real
axis in a pitchfork bifurcation at v.=6.057 011
m/s and the motion becomes mildly unstable. We
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Fig. 2 Eigenvalues A from the linearized stability

analysis for the benchmark bicycle from Fig-
ure 1 and Table | where the solid lines corre-
spond to the real part of the eigenvalues and
the dashed line corresponds to the imaginary
part of the eigenvalues, in the forward speed
range of 0<y <10 m/s. The zero crossings of
the real part of the eigenvalues are for the
weave motion at at v,=4.301 611 m/s and
for the capsize motion at v,=6.057 011 m/s,
giving the bicycle an asymptotically stable
speed range of vpy<v<w.

call a motion mildly unstable when the eigen-
values have a absolute value which is smaller than
257!, in which case it is fairly easy to stabilize the
motion manually. With further increase in speed,
the capsize eigenvalue approaches zero. We con-
clude that the speed range for which the bicycle
shows asymptotically stable behaviour is v, <v <
Ve, although from a practical point of view one
could say that the bicycle is easy to balance for all
speeds above 2 m/s.

5. Equations of Motion Derived with
the Numeric Program SPACAR

SPACAR is a program system written in For-
tran-77 for dynamic analysis of multibody sys-
tems, based on a finite element technique. Star-

ting from the principles as laid out by Besseling
(1964), this software was initiated in the seven-
ties by Van Der Werff (1977), and has been
further developed among others by Jonker (1988 ;
1990), Meijaard (1991), and Schwab (2002). The
SPACAR program can handle mechanical sys-
tems of rigid and fexible bodies that are inter-
connected by complex joints in both open and
closed kinematic loops and having rolling con-
tacts. The dynamical equations are given for a set
of minimal coordinates rather than with the aid
of Lagrangian multipliers. Besides doing forward
dynamic analysis, the system is also capable of
deriving the numeric coefficients for the linearized
equations of motion in any given configuration
and state of motion of the system. With the help
of a rather limited number of finite element types
it is possible to model a wide class of systems.
Typical types of elements are beam, truss and
hinge elements, while more specialized elements
can be used to model complex joint connections,
transmissions of motion (Schwab and Meijaard,
1999), and rolling contact as in road vehicles and
track-guided vehicles (Schwab and Meijaard,
2003 ; 1999).

The SPACAR model for the benchmark bi-
cycle is sketched in Figure 4, whereas the input
file for the SPACAR program describing this
model is presented in Appendix A. The model
consists of two knife-edge rigid wheel elements,
two rigid bodies for the front and the rear frame,
and six hinge elements for describing relative
rotations. The elements describing the three de-
grees of freedom are the relative rotations in:
hinge @ for the roll angle ¢, hinge (9 for the
steering angle &8, and hinge @ for the rotation
Oy of the rear wheel with respect to the rear frame.
The four kinematic coordinates are described by
the x and ¥ components of node 9 which is the
rear-wheel contact point, the relative rotation in
hinge @ for the yaw angle ¥ and the relative
rotation in hinge @ for the rotation §; of the
front wheel with respect to the front frame.

5.1 Linearized equations of motion derived
with the numeric program SPACAR
The resulting matrices of the linearized equa-
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tions of motion (23) as determined by the nu-
meric program SPACAR are:

180812 100 000 000 02, 2.323 431 426 235 49 (32)
2.323 431 426 235 49, 0.301 265 709 342 56

—794.119 500 000 000, —25.739 089 291 258
K0=[ s }( )

—25.739 089 291 258, —8.139 414 705 882

(34)

0, 76.406 208 759 656 66
Ra-| )

0, 2.675 605 536 332 16

Cl= 0.000 000 000 000 05, 33.773 869 475 930 10 (35)
—0.848 234 478 256 93, 1.706 965 397 923 &7

These agree with the values given in Section 4,
where at most the fifteenth digit may differ a
unit.

5.2 Non-linear dynamic response

When an uncontrolled bicycle is in its stable
speed range, roll and steer perturbations die aw-
ay, in a seemingly damped fashion. However, the
entire system is energy conservative, and what has
happened is that the perturbation energy has been
transferred into energy of forward travel. As the
forward speed is affected only to second order,
linearized equations do not capture this. There-
fore a non-linear dynamic analysis with SPAC-
AR is performed on the benchmark bicycle mo-
del to demonstrate this phenomenon. The initial
conditions at =0 are an upright configuration,

v — [m/s]

/\ 4.60
0.5 4.55

# R ]

0 P Ny 7 " 4.50

\& v RN e
e
05
0 1 2 4
3 t[sec] °

Fig. 3 Non-linear dynamic response of the bench-

mark bicycle from Figure 1 and Table 1, with
the angular roll velocity ¢, the angular steer-
ing velocity §, and the forward speed y=
—¢rRyy for the initial conditions: (¢, &,
6-)0=(0,0,0) and (¢, 8, v)o=(0.5rad/s, 0,
4.5 m=s) for a time period of 5 seconds

(¢ & 8-)=(0, 0, 0), at a forward speed of v=
4.5 m/s, which is within the stable speed range of
the linearized analysis, and a small perturbation
of the angular roll velocity of ¢=0.5 rad/s. Then,
in Figure 3, the dynamic response clearly shows a
small increase of the forward velocity v while the
perturbed lateral motions die out. In the same
figure we see that the period for the roll and the
steer motion is approximately 7;=1.73 s, which
compares well with the 1.734 475 s from the lin-
earized stability analysis. Note also the small
phase lag of the steering motion & relative to the
roll motion ¢@.

6. Linearized Equations of Motion
Derived with the Symbolic
Program AutoSim

With the multibody dynamics program Auto-
Sim (Sayers, 1991), the equations of motion for a
mechanical system can be derived in a symbolic
form. The program is mainly designed for an-
alysing systems of rigid bodies that are inter-
connected by prismatic and revolute joints and
are arranged in a tree topology. Additional con-
straints can be imposed on the system for taking
into account kinematic closed loops, special joints
or non-holonomic constraints. Additional holo-
nomic constraints, however, cannot be solved in
general in a symbolic form for the dependent
coordinates : an iterative numerical solution for
these coordinates is needed, which destroys the
purely symbolic nature of the equations. Non-
holonomic constraints are generally linear in the
velocities and can be solved for the dependent
velocities.

The methods used for deriving the equations
of motion are mainly based on Kane’s approach
(Kane, 1968), with some minor modifications.
The program is written in Lisp (Steele, 1990) and
consists of a set of definitions of functions, macros
and data structures. The definitions give proce-
dures for handling algebraic expressions, for mo-
delling of components of multibody systems such
as bodies, points, joints and forces, for formula-
ting the equations of motion and for generating
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output. The input file for an analysis is a Lisp
program and the full language is available to the
user. The modeller has a fairly good control over
the formulation of the equations of motion, while
user-defined forces are easy to add.

The equations of motion are obtained in the
form

q=S(q, Hu

(36)
u=[M(q, #)]7'Q(q, u, #)

Here, q are the generalized coordinates, u are
the generalized speeds, S is the kinematic ma-
trix that relates the rates of the generalized coor-
dinates to the generalized speeds, M is the system
matrix, and Q contains all force terms and veloc-
ity dependent inertia terms.

A standard option for linearization is avai-
lable, which, however, is not applicable for sys-
tems with closed kinematic loops (e.g. the front-
wheel ground contact of a bicycle). Fortunately,
for the highly symmetric bicycle model, the de-
pendent coordinate, the pitch angle, remains zero
to first order, for which special case the lineari-
zation option gives the right results. The output
consists of a MatLab script file that calculates the
matrices of the linearized equations.

The input file used for the bicycle model is
listed in Appendix B. The generalized coordinates
and velocities are the same as those in the SPAC-
AR model. Two massless intermediate reference
frames have been introduced : the yawing frame
describes the in-plane translation and yawing of
the rear frame, and the rolling frame describes
the rolling of the rear frame with respect to the
yawing frame. These additional frames automa-
tically satisfy the holonomic constraint at the rear
wheel, and also give a better control over the
choice of the generalized coordinates. The holo-
nomic constraint at the front wheel and the four
non-holonomic constraints are explicitly defined
in the input file.

The resulting matrices of the linearized equa-
tions of motion (23) are:

_180.812 100 000 000 04, 2.323 431 426 235 49

| 2323 431 426 235 49, 0.301 265 709 342 56 (37)

Ko= —794.199 500 000 000, —25.739 089 291 258 (38)
—25.739 089 291 258, —8.139 414 705 §82
|0, 76 :406 208 759 656 69 (39)
0, 2:675 605 536 332 17
0, 33:773 869 475 930 11
Cl_{—0.848 234 478 256 93, 1:706 965 397 923 87} (40)

These agree with the values given in Section 4,
where at most the fifteenth digit may differ a
unit,

7. Conclusions

If we compare the results obtained by the three
methods, it appears that the coefficients for the
linearized equations agree with each other and the
difference are only caused by the finite precision
of the numeric calculations: the relative errors
are less than 1 part in 1014. This gives us confi-
dence that the presented results are correct and
the problem can be used as a benchmark test for
multibody dynamics simulations.

Starting from the given basic model for the
bicycle, more elaborate models can be developed.
These may include the finite width of the tyres,
control torque at the handle bar, relative motion
between the rider and the rear frame and tyre
models that include wheel slips and compliance.
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A. SPACAR Input

The corresponding sketch of the model for
generating the SPACAR input file is shown in
Figure 4.
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Fig. 4

Sketch of the bicycle model for SPACAR
input together with node numbers, with str-

aight arrows for positions, curved arrows for
orientations, and element numbers encircled

% benchmarkl, linearized equations of motion

* elements

hinge 1 2 3 0 0 1
hinge 2 5 6 1 0 0O
hinge 3 6 4 0—-1 0
hinge 4 4 8 0—-1 0
wheel 5.7 8 9 0—-1 0
pinbody 6 I 2 9

pinbody 7 3 4 7

pinbody 8 3 4 10

hinge 9 4 1l 1 0 3
pinbody 10 10 11 12

pinbody 11 10 11 13

hinge 12 11 14 0—-1 0
wheel 13 13 14 15 0—-1 0
* nodes

x 10 0 0

x 3 03 0-09

x 70 0 —03

x 9.0 0 0

x 10 08 0 —09

x 12 09 0 —0.7

x 13 1.02 0 —0.35

x 15 102 0 O

% boundary conditions

fix 1 123

fix 2 1234

rlse
line
rlse
inpute

=)}
—

enhc
enhc
rlse

O N W B W N e
[\
w

line
rise 12
enhc 13 1 1
enhc 13 5 12 1
* mass & stiffness

[ e N U SUR
=
[\

mass 3 85

mass 4 9.2 0 24 11 0 28
mass 7 2

mass 8 006 0 0 0.12 0 0.06
mass 11 0.0546 0 —0.0162 0.06 0 0.0114

mass 12 4

mass 13 3

mass 14 01400 0280 0.14
% applied force, take g=9.81

3 0 0 83385

7 0 0 1962

12 0 0 3924
130 0 2943

% initial conditions and settings
ed 41 10

epskin le-6

force
force
force
force

epsint  le-5
epsind le-5
timestep | le-5
hmax 0.01

end

eof

B. AutoSim Input

;5o ; This is the file fiets. Isp, with the benchmarkl
model.

;; Set up preliminaries :

(reset)

(si)

(add-gravity :direction [nz] : gees g)

(set-names g “Acceleration pf gravity”)

(set-defaults g 9.81)

; this value is used in the benchmark.
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; The name of the model is set to the string

“fiets”

(setsym % multibody-system-name % “fiets”)

.; Introduce a massless moving reference frame.
This frame

.; has x and y translational degrees of freedoms
and a yaw

.; rotational degree of freedom.

( add-body yawframe
: name “moving yawing reference frame”
: parent n : translate (x y)
: body-rotation-axes z
. parent-rotation-axis z
: reference-axis x : mass 0
. inertia-matrix 0 )

.; Introduce another massless moving reference
frame. This

.; frame has a rolling (rotational about a longitu-
dinal

'; axis) degree of freedom.

{ add-body rollframe
: name “moving rolling reference frame”
: parent yawframe : body-rotation-axes (x)
: parent-rotation-axis x
: reference-axis y : mass 0
: inertia-matrix 0 )

.; Add the rear frame of the bicycle. The rear
frame has a

;; pitching (rotation about the local lateral y-axis
of the

.; frame) degree of freedom.

( add-body rear : name “rear frame”
: parent rollframe
: joint-coordinates (0 0 “~Rrw”)
: body-rotation-axes y
: parent-rotation-axis y : reference-axis z
: cm-coordinates (bb 0 “Rrw-hh™)
: inertia-matrix
({Irxx 0 Irxz) (0 Iryy 0) (Irxz O Irzz)) )

( set-mames

: mass Mr

Rrw “Rear wheel radius”

bb “Longitudinal distance to the c.o.m. of the
rear frame”

hh “Height of the centre of gravity of the rear
frame”

Mr “Mass of the rear frame”

Irxx “Longitudinal moment of inertia of the

rear frame”
Irxz “Minus product of inertia of the rear
frame”
Iryy “Transversal moment of inertia of the rear
frame”
Irzz “Vertical moment of inertia of the rear
frame” )
( set-defaults Rrw 0.30 bb 0.3 hh 0.9
Mr 85.0 Irxx 9.2 Irxz 2.4 Tryy 11.0 Irzz 2.8 )
;; Add the rear wheel of the vehicle. This body
rotates
;; about the y axis of its physical parent, the rear
frame.
( add-body trw : name “rear wheel” :parent rear
: body-rotation-axes y : parent-rotation-axis y
: reference-axis z
: joint-coordinates (0 0 0)
: mass Mrw
. inertia-matrix (irwx “2.0% irwx” irwx) )
( set-names
Mrw “mass of the rear wheel”
irwx “rear wheel in-plane moment of inertia” )
(set-defaults Mrw 2.0 irwx 0. 06)
;; Now we proceed with the front frame.
;; Define the steering and reference axes of the
front frame :
;; Add in the front frame : define some points
( add-point head : name “steering head point B”
: body n
. coordinates {xcohead 0 zcohead) )
( add-point frontcmpoint
: name “c.o.m. of the front frame”
: body n: coordinates (xfcm 0 zfcm) )
( set-names
epsilon “steering head angle”
xcohead “x coordinate of the steering head
point B”
zcohead “z coordinate of the steering head
point B”
xfcm “x coordinate of the c.o.m. of the front
frame”
zfcm “z coordinate of the c.o.m. of the front
frame” )
( set-defaults epsilon 0.321750554396642163
xcohead 0.80 zcohead
—0.90 xfcm 0.90 zfcm —0.70 )
( add-body front: name “front frame”
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: parent rear
: body-rotation-axes z : parent-rotation-axis
“sin (epsilon) % [rearx]+cos (epsilon) * [rearz]”
: reference-axis
“cos (epsilon) * [rearx]-sin (epsilon) * [rearz]”
: joint-coordinates head
: cm-coordinates frontcmpoint
: mass Mf
. inertia-matrix ((Ifxx 0 Ifxz) (0 Ify 0) (Ifxz 0
Ifzz))
. inertia-matrix-coordinate-system n )
( set-names
Mf “Mass of the front frame assembly”
Ifxx “Longitudinal moment of inertia of the
front frame” )
Ifxz “Minus product of inertia of the front
frame”
Ifyy “Transversal moment of inertia of the front
frame”
Ifzz “Vertical moment of inertia of the front
frame” )
( set-defaults Mf 4.0
Ifxx 0.0546 Ifxz —0.0162 Ifyy 0.06 Ifzz 0.0114 )
;; Add in the front wheel :
( add-point fw_centre
: name “Front wheel centre point”
: body n: coordinates (11 0 “-Rfw”) )
( add-body fw : name “front wheel”
: parent front
: body-rotation-axes y : parent-rotation-axis y
: reference-axis “[nz]”
: joint-coordinates fw_centre
: mass Mfw
. inertia-matrix {ifwx “2.0% ifwx” ifwx) )
{ set-names
11 “Wheel base”
Rfw “Radius of the front wheel”
Mfw “Mass of the front wheel”
ifwx “In-plane moment of inertia of the front
wheel” )
( set-defaults 11 1.02
Rfw 0.35 Mfw 3.0 ifwx 0.14 )
;; The system is now complete,
; ; except for the contact constraints at the wheels.
:: The holonomic constraint at the rear wheel is
;; automatically satisfied. The rear wheel slip is
Zero.

( add-speed-constraint
“dot (vel (yawframe0), [yawframex])
+Rrw * (ru(rear) +ru(rw))”
:u “tu(yawframe,1)” )
( add-speed-constraint
“dot (vel (yawframe0), [yawframey])”
:u “tu{yawframe, 2)” )
;; For the front wheel we have a holonomic con-
straint for
;; the contact and two non-holonomic slip con-
straints.
;; The slip velocities are defined now.
(setsym singammafw “dot([fwy],[nz])”)
( setsym cosgammafw
“sqrt (1 — @singammafw % %2)” )
( setsym fw_rad “([nz] —[fwy]
% @singammafw)/ @cosgammafw” )
( setsym slipfw_long
“dot (vel (fw0) 4+ Rfw * cross{(rot(fw),
@fw rad), [nx])” )
;3 No longitudinal slip on front wheel ;
;; eliminate rotational velocity about the axis
( add-speed-constraint
“@slipfw_long” : u “ru(fw)” )
;; normal constraint ; eliminate the pitch angle
( setsym slipfw n
“dot (vel (fw0) +Rfw % cross (rot(fw),
@fw rad), [nz])” )
( add-speed-constraint
“@slipfw n”: u “ru(rear)” )
( add-position-constraint
“dot(pos (fw0), [nz]) +Rfw * @cosgammafw”
. q “rq(rear)” )
;; No lateral slip on front wheel ;
;; eliminate yaw rate of the yawing frame
( setsym slipfw_lat
“dot (vel (fw0) +Rfw * cross (rot (fw) ,
@fw rad), [ny])” )
( add-speed-constraint
“@slipfw_lat” : u “ru{yawframe)” )
(dynamics)
(linear)
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