• Title/Summary/Keyword: Latch Circuit

Search Result 101, Processing Time 0.027 seconds

Effect of Channel Variation on Switching Characteristics of LDMOSFET

  • Lee, Chan-Soo;Cui, Zhi-Yuan;Kim, Kyoung-Won
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.2
    • /
    • pp.161-167
    • /
    • 2022
  • Electrical characteristics of LDMOS power device with LDD(Lightly Doped Drain) structure is studied with variation of the region of channel and LDD. The channel in LDMOSFET encloses a junction-type source and is believed to be an important parameter for determining the circuit operation of CMOS inverter. Two-dimensional TCAD MEDICI simulation is used to study hot-carrier effect, on-resistance Ron, breakdown voltage, and transient switching characteristic. The voltage-transfer characteristics and on-off switching properties are studied as a function of the channel length and doping levels. The digital logic levels of the output and input voltages are analyzed from the transfer curves and circuit operation. Study indicates that drain current significantly depends on the channel length rather than the LDD region, while the switching transient time is almost independent of the channel length. The high and low logic levels of the input voltage showed a strong dependency on the channel length, while the lateral substrate resistance from a latch-up path in the CMOS inverter was comparable to that of a typical CMOS inverter with a guard ring.

A Low Power 16-Bit RISC Microprocessor Using ECRL Circuits

  • Shin, Young-Joon;Lee, Chan-Ho;Moon, Yong
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.513-519
    • /
    • 2004
  • This paper presents a low power 16-bit adiabatic reduced instruction set computer (RISC) microprocessor with efficient charge recovery logic (ECRL) registers. The processor consists of registers, a control block, a register file, a program counter, and an arithmetic and logical unit (ALU). Adiabatic circuits based on ECRL are designed using a $0.35{\mu}m$ CMOS technology. An adiabatic latch based on ECRL is proposed for signal interfaces for the first time, and an efficient four-phase supply clock generator is designed to provide power for the adiabatic processor. A static CMOS processor with the same architecture is designed to compare the energy consumption of adiabatic and non-adiabatic microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is about 1/3 compared to that of the static CMOS microprocessor.

  • PDF

Efficient Path Delay Testing Using Scan Justification

  • Huh, Kyung-Hoi;Kang, Yong-Seok;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.187-194
    • /
    • 2003
  • Delay testing has become an area of focus in the field of digital circuits as the speed and density of circuits have greatly improved. This paper proposes a new scan flip-flop and test algorithm to overcome some of the problems in delay testing. In the proposed test algorithm, the second test pattern is generated by scan justification, and the first test pattern is processed by functional justification. In the conventional functional justification, it is hard to generate the proper second test pattern because it uses a combinational circuit for the pattern. The proposed scan justification has the advantage of easily generating the second test pattern by direct justification from the scan. To implement our scheme, we devised a new scan in which the slave latch is bypassed by an additional latch to allow the slave to hold its state while a new pattern is scanned in. Experimental results on ISCAS'89 benchmark circuits show that the number of testable paths can be increased by about 45 % over the conventional functional justification.

  • PDF

Flicker Prevention Through Transition-Frequency Modulation in Visible Light Communication (가시광통신에서 천이주파수 변조를 이용한 플리커 방지)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.243-248
    • /
    • 2020
  • In this study, we applied transition-frequency modulation to prevent the flickering of light-emitting diodes (LEDs) in visible light communication (VLC). In the VLC transmitter, rectangular waveforms with transition frequencies of four and two in each bit time were used for the high and low bits, respectively, in the non-return-to-zero data. In the VLC receiver, an RC-high-pass filter (HPF) was used to eliminate the interference of the 120 Hz noise light from the adjacent lighting lamps, and an SR-latch circuit was used to recover the transmitted signal using spikes from the output of the RC-HPF. This configuration is useful for constructing VLC systems that are flicker-free and resistant to adjacent noise light interference.

Highly Robust AHHVSCR-Based ESD Protection Circuit

  • Song, Bo Bae;Koo, Yong Seo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.272-279
    • /
    • 2016
  • In this paper, a new structure for an advanced high holding voltage silicon controlled rectifier (AHHVSCR) is proposed. The proposed new structure specifically for an AHHVSCR-based electrostatic discharge (ESD) protection circuit can protect integrated circuits from ESD stress. The new structure involves the insertion of a PMOS into an AHHVSCR so as to prevent a state of latch-up from occurring due to a low holding voltage. We use a TACD simulation to conduct a comparative analysis of three types of circuit - (i) an AHHVSCR-based ESD protection circuit having the proposed new structure (that is, a PMOS inserted into the AHHVSCR), (ii) a standard AHHVSCR-based ESD protection circuit, and (iii) a standard HHVSCR-based ESD protection circuit. A circuit having the proposed new structure is fabricated using $0.18{\mu}m$ Bipolar-CMOS-DMOS technology. The fabricated circuit is also evaluated using Transmission-Line Pulse measurements to confirm its electrical characteristics, and human-body model and machine model tests are used to confirm its robustness. The fabricated circuit has a holding voltage of 18.78 V and a second breakdown current of more than 8 A.

The novel NPLVTSCR ESD ProtectionCircuit without Latch-up Phenomenon for High-Speed I/O Interface (Latch-up을 방지한 고속 입출력 인터페이스용 새로운 구조의 NPLVTSCR ESD 보호회로)

  • Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.54-60
    • /
    • 2007
  • In this study novel ESD protection device, namely, N/P-type Low Voltage Triggered SCR, has been proposed, for high speed I/O interface. Proposed device could lower high trigger voltage($\sim$20V) of conventional SCR and reduce latch-up phenomenon of protection device during the normal condition. In this Study, the proposed NPLVTSCR has been simulated using TMA MEDICI device simulator for electrical characteristic. Also the proposed device's test pattern was fabricated using 90nm TSMC's CMOS process and was measured electrical characteristic and robustness. In the result, NPLVTSCR has 3.2V $\sim$ 7.5V trigger voltage and 2.3V $\sim$ 3.2V holding voltage by changing PMOS gate length and it has about 2kV, 7.5A HBM ESD robustness(IEC61000-4-2).

  • PDF

Design of Test Pattern Generator and Signature Analyzer for Built-In Pseudoexhaustive Test of Sequential Circuits (순서회로의 Built-In Pseudoexhaustive Test을 위한 테스트 패턴 생성기 및 응답 분석기의 설계)

  • Kim, Yeon-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.272-278
    • /
    • 1994
  • The paper proposes a test pattern generator and a signature analyzer for pseudoexhaustive testing of the combinational circuit part within a sequential circuit when performing built-in self test of the circuit. The test pattern generator can scan in the seed test pattern and generate exhaustive test patterns. The signature analyzer can perform the analysis of the circuit response and scan out the result. Such test pattern generator and signature analyzer have been developed using SRL(shift register latch) and LFSR(linear feedback shift register).

  • PDF

Hysteresis Current Control with Self-Locked Frequency Limiter for VSI Control (자기동조 주파수 제한기를 갖는 전압원 인버터의 히스테리시스 전류제어)

  • Choe, Yeon-Ho;Im, Seong-Un;Gwon, U-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.23-33
    • /
    • 2002
  • A hysteresis control is widely used to control output current of inverter. A hysteresis bandwidth is affected by system parameters such as source voltage, device on/off time, load inductance and resistance. The frequency limiter is used to protect switching devices overload. In the conventional hysteresis controller, a lock-out circuit with D-latch and timer is used to device protection circuit. But switching delay time and harmonic components are appeared in output current. In this paper the performance of lock-out circuit is tested, and new circuit for switching device fault protection is proposed ad it's performance is simulated.

A 12-kV HBM ESD Power Clamp Circuit with Latchup-Free Design for High-Voltage Integrated Circuits (고전압 집적회로를 위한 래치업-프리 구조의 HBM 12kV ESD 보호회로)

  • Park, Jae-Young;Song, Jong-Kyu;Jang, Chang-Soo;Kim, San-Hong;Jung, Won-Young;Kim, Taek-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the operating voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD(ElectroStatic Discharge) power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a $0.35{\mu}m$ 3.3V/60V BCD(Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the operating voltage. Proposed power clamp operates safely because of the high holding voltage. From the measurement on the devices fabricated using a $0.35{\mu}m$ BCD Process, it was observed that the proposed ESD power clamp can provide 800% higher ESD robustness per silicon area as compared to the conventional clamps with a high-voltage diode.

A Study on SCR-based ESD Protection Circuit with High Holding Voltage and All-Direction Characteristics (높은 Holding Voltage 및 All-Direction 특성을 갖는 SCR 기반의 ESD 보호회로에 관한 연구)

  • Jin, Seung-Hoo;Do, Kyoung-Il;Woo, Je-Wook;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1156-1161
    • /
    • 2020
  • In this paper, we propose a new ESD protection circuit with improved electrical characteristics through structural changes of the existing one-way SCR. The proposed ESD protection circuit has high holding voltage characteristics due to the inserted N+ floating and P+ floating regions, and thus the latch-up immunity characteristics are improved. In addition, structural change enables ESD discharge in four types of Zapping mode (PD, PS, ND, NS), and has superior area efficiency than unidirectional SCR. In addition, the P+ floating and N+ floating lengths corresponding to the base length of the parasitic bipolar transistor, and the distance between P+ floating and N+ floating were designated as design variables, and the high holding voltage was verified through Synopsys' TCAD Simulator.