• Title/Summary/Keyword: Laser output

Search Result 777, Processing Time 0.035 seconds

Development of Tilt angle measurement system of plastic thin-film using Position Sensitive Device (PSD를 이용한 플라스틱 박막 필름의 경사 각도 측정 시스템 개발)

  • Kim, Gi-Seung;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.134-138
    • /
    • 2021
  • Various types of precision plastic thin films are used widely in high-performance displays, such as smartphones. For plastic thin-films manufactured by the Roll-to-Roll process, the film thickness must be measured and managed while moving. In the Roll-to-Roll process, wrinkles are generated when tension is applied to the film, which causes an inclination on the optical axis of the thickness gauge, resulting in a loss of accuracy. Therefore, this study attempted to develop an optical interference tomography measurement system. In this study, the tilt angle of the film was measured to correct the measurement value error in the thickness gauge caused by the tilt of the film. The system was constructed so that the laser was irradiated on the tilted film, and the laser reflected from the film was formed on the PSD. The relationship between the tilt angle of the film and the output value of the PSD was obtained experimentally. Using this, a device to measure the tilt angle of the film was constructed, and angle measurements were taken at a speed of 250,000Hz.

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Electrical Loss Reduction in Crystalline Silicon Photovoltaic Module Assembly: A Review

  • Chowdhury, Sanchari;Kumar, Mallem;Ju, Minkyu;Kim, Youngkuk;Han, Chang-Soon;Park, Jinshu;Kim, Jaimin;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.111-120
    • /
    • 2019
  • The output power of a crystalline silicon (c-Si) photovoltaic (PV) module is not directly the sum of the powers of its unit cells. There are several losses and gain mechanisms that reduce the total output power when solar cells are encapsulated into solar modules. Theses factors are getting high attention as the high cell efficiency achievement become more complex and expensive. More research works are involved to minimize the "cell-to-module" (CTM) loss. Our paper is aimed to focus on electrical losses due to interconnection and mismatch loss at PV modules. Research study shows that among all reasons of PV module failure 40.7% fails at interconnection. The mismatch loss in modern PV modules is very low (nearly 0.1%) but still lacks in the approach that determines all the contributing factors in mismatch loss. This review paper is related to study of interconnection loss technologies and key factors contributing to mismatch loss during module fabrication. Also, the improved interconnection technologies, understanding the approaches to mitigate the mismatch loss factors are precisely described here. This research study will give the approach of mitigating the loss and enable improvement in reliability of PV modules.

Self-Sensing Actuator Using an Ion-Polymer Metal Composite Based on a Neural Network Model (뉴럴네트워크 모델 기반의 IPMC 셀프 센싱 액추에이터)

  • Yoon, Jong-Il;Truong, Dinh Quang;Ahn, Kyoung-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1865-1870
    • /
    • 2010
  • We develop an IPMC actuator with self-sensing behavior based on an accurate neural network model (NNM). The supplied voltage and voltage signals measured at two determined points on both sides of the IPMC sheet are used as inputs to the NNM. A CCD laser displacement sensor is installed in the rig for accurate measurement of the IPMC tip displacement that is used as the training output of the proposed NNM. Consequently, the NNM model is used to estimate the IPMC tip displacement; the NNM parameters are optimized by the collected input/output training data. The effectiveness of the model for the IPMC actuator is then verified by modeling results.

Passive Temperature Compensation for All Optical Fiber Type DWDM Interleaver (고밀도 파장분할용 전광섬유형 인터리버의 수동 온도보상)

  • Chang Jin Hyeon;Kim Yung Kwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.35-42
    • /
    • 2004
  • In this paper, we report Mach Zehnder Interleaver of optical fiber type is fabricated by the fabrication system only for interfermeter design, and it is used $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. it can he done by applying a substrate with high thermal expansion coefficient as well as an adjusting the position between two optical fiber couplers. Consequently, the output wavelength is shifted within 0.05 nm when the surrounding temperature varies until $60^{\circ}C$.

Fabrication of All-fiber 7x1 Pump Combiner Based on a Fiber Chip for High Power Fiber Lasers (고출력 광섬유 레이저를 위한 광섬유 칩 기반 All-fiber 7x1 펌프 광 결합기 제작)

  • Choi, In Seok;Jeon, Min Yong;Seo, Hong-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.135-140
    • /
    • 2017
  • In this paper, we report measured results for an all-fiber $7{\times}1$ pump combiner based on an optical fiber chip for high-power fiber lasers. An optical-fiber chip was fabricated by etching a fiber, having core and cladding diameters of 20 and $400{\mu}m$, in the longitudinal direction. To both ends of the etched chip, we spliced input and output fibers. First, we tied together seven optical fibers, having core and cladding diameters of 105 and $125{\mu}m$ respectively, in a cylindrical bundle and spliced them to the $375-{\mu}m$ end of the optical-fiber chip. Then, we attached an output DCF with core and cladding diameters of 25 and $250{\mu}m$ to the $250-{\mu}m$ end of the optical-fiber chip. Finally, the fabricated $7{\times}1$ pump combiner showed an average optical coupling efficiency of about 90.2% per port. This chip-based pump combiner may replace conventional pump combiners by massive production of fiber chips.

The effect of 100KHz PWM LED light irradiation on RAT bone-marrow cells (100kHz PWM LED 광조사가 백서 골수세포에 미치는 영향)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Kim, Young-Pyo;Lee, Ho-Sic;Park, Yong-Pil;Yu, Seong-Mi;Lee, Hee-Gap;Kim, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.512-513
    • /
    • 2008
  • The study examined what effects 100kHz PWM LED light irradiation causes to bone marrow cells of SD-Rat when LED characterized cheap and safe is used onto the light therapy by replacing the low 1evel laser. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Consequent1y, the current value could be controlled by the change of 1eve1 in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow cells was verified in 100kHz PWM LED light irradiation group as compared to non-irradiation group.

  • PDF

Development Plan of a Human Model System for Educating Acupoint Location and Its Implementation (경혈 위치교육 평가지원시스템의 개발계획 수립과 제작)

  • Yeo, Sujung;Nam, Donghyun
    • Korean Journal of Acupuncture
    • /
    • v.36 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Objectives : Teaching the standardized acupuncture point locations and improving the accuracy of acupoint locations through objective evaluation is a very important part of Korean medicine education. The aim of this study is to develop a dummy system for evaluation and support of teaching acupoint location in meridian and acupoints classes and to introduce the developed system. Methods : We established a protocol for the development of the system. The protocol included definition of usage purpose, definition of its essential performance, and set of scope. The system compares the amount of light at the target acupoint with the amount of light at the other sites to determine whether the target acupoint is properly specificated. Results : A prototype of the system was built according to the protocol and consists of light emitter, dummy, control/operation, input part and output part. The light emitter projects laser beam passing through the skin of the dummy. Light sensors were attached inside the acupoints of the dummy. Three types of light sensors were selected depending on the location of the acupoints. The arithmetic, input, and output parts were constructed using Arduino and Raspberry pi boards. The developed system was applied in class. Conclusions : It is thought that the dummy system for evaluation and support of teaching acupoint location can be used as a training model in order to help teach standardized acupoint locations and objective evaluation.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

Comparison of the Characteristics of 16 Commercial Nebulizer/Compressor Combinations Used in Korea (국내 시판되는 16가지 연무기/압축기의 성능 평가)

  • Kim, Hyun Jung;Lee, Cho Ae;Hwang, Eun Kyung;Han, Man Young;Ann, Uk Sung;Cho, Young Min
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.12
    • /
    • pp.1235-1241
    • /
    • 2003
  • Purpose : We assessed the dynamic characteristics of 16 nebulizer/compressor combinations currently available in Korea. Methods : The 16 nebulizer/compressor combinations(Pariboy Type 38/Long life, Pariboy Type N/Long life, Pariboy Type N/Salter 8900, Pariboy Type N/LC, Devilbiss pulmoaid-LT/Hudson, Devilbiss pulmoaid/Hudson, Mesmed neb-300/Own, San-up 3040/Hudson, Midas(Basic)/Own, AirJolie 2/Hudson, Thomas 1127/Salter 8900, Noel NE-2000/Salter 8900, Omron CX3/Hudson, Chang Woo CWN-100/Salter 8900, Voyage/Mefar, Chang Woo ASI-Pro/Medel jet pulse) were evaluated in terms of particle size and mass output. In addition, we determined the effects of nebulizer fill volume on mass output. Results : Pariboy Type N/Long life has the highest respirable mass of 0.184 mg/min and Mesmed Neb-300/Own has the lowest 0.019 mg/min. Pariboy Type N/Long life has the highest mass output of 0.68 mg/min and the shortest mass median aerodynamic diameter(MMAD) of $3.76{\mu}m$. All combinations other than Pariboy Type N/Long life produced a MMAD of over $5{\mu}m$. MMAD over a 5 min nebulization ranged 3.76 to $9.83{\mu}m$. There were no significant effects of fill volume on mass output. Conclusion : We concluded that there is a wide variation in performance of nebulizer/compressor combinations. The characteristics of nebulizer/compressor combinations should be considered in selecting products.