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Abstract: Building Information Modeling (BIM) technology is a key component of modern 

construction engineering and project management workflows. As-is BIM models that represent the 

spatial reality of a project site can offer crucial information to stakeholders for construction 

progress monitoring, error checking, and building maintenance purposes. Geometric methods for 

automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of 

higher-level semantic information in the data. Whereas, semantic segmentation methods only 

output labels at the point level without creating object level models that is necessary for BIM. To 

address these issues, this research proposes a hybrid semantic-geometric approach for clutter-

resistant floorplan generation from laser-scanned building point clouds. The input point clouds are 

first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic 

segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, 

stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used 

for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric 

reasoning rules is applied to group the points together into individual building elements. Finally, a 

2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building 

elements into 2D lines which are used to create the output floorplan. The proposed method is 

evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and 

warping error. 

 

Key words:  floorplan reconstruction, Scan to BIM, 3D deep learning, classification and 

segmentation, machine learning  

 

1. INTRODUCTION 

In Architecture, Construction, and Engineering community, Building Information Modeling 

(BIM) technology is a key component of modern construction engineering and project management 

workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial 
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information to stakeholders for construction progress monitoring, error checking, and building 

maintenance purposes. However, as-planned BIM models may not always be available, and for the 

important use case of as-built BIM that represents the actual site conditions, the approach of 

building the model using 3D scan data have recently gained attention. Especially, the 1st Scan-to-

BIM challenge is recently hosted by the 2021 CV4AEC workshop and provide a publicly-available 

building point cloud dataset to reconstruct floor plans or BIM models (https://cv4aec.github.io/). 

This paper will introduce our method, which placed 2nd in the floor plan reconstruction challenge. 
Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) 

often fail to make use of higher-level semantic information in the data. Whereas, semantic 

segmentation methods only output labels at the point level without creating object level models 

that is necessary for BIM. Existing methods for Scan-to-BIM are also vulnerable to occlusion, 

clutter, and high variability in the input point clouds. Furthermore, compared to previous public 

datasets, the CV4AEC dataset provides an unstructured large-scale reality dataset with significant 

noise and occlusion. To address these issues, this research proposes a hybrid semantic-geometric 

framework for clutter-resistant floorplan generation from laser-scanned building point clouds 

(Figure 1). The input point clouds are first pre-processed by normalizing the coordinate system and 

removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label 

each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas 

the wall, door, and stair points are used for 2D floorplan generation. A region-growing 

segmentation algorithm paired with geometric reasoning rules is applied to group the points 

together into individual building elements. Finally, a 2-fold Random Sample Consensus 

(RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are 

used to create the output floorplan. 

 

 

Figure 1. The overall framework 

2. RELATED WORK 

This section provides an overview of the related literature in the context of both building point 

cloud datasets and algorithms to reconstruct semantic objects from raw point clouds. As the quality 

and traits of the building point clouds directly affects the direction of the algorithm development, 

and since the CV4AEC dataset used in this paper has several differences from other commonly-

used datasets, we summarize the characteristics of different building point cloud datasets in terms 

of object class of interest and target building elements in Table 1. Individual datasets contain 
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different object classes, but we assign them into the following categories in Table 1: Core structural 

element refers to the key building elements of a wall, floor, ceiling, and door while structural 

element includes all of them, to which other static building parts can be added. Indoor object refers 

to moving or temporary objects such as furniture. Compared to others, the CV4AEC dataset we 

targeted has much greater data volume and contains diverse types of building areas with clutter, 

thus causing difficulty for the existing method to fully exploit the features of the whole datasets.  

Table 1. Building Point Cloud Datasets 

Dataset Description Objects Building Elements 

S3DIS [1] 6 large-scale building 

areas 

13 object classes Structure elements, 

Indoor objects 

Xue et al.’s 

[2] 
Scanned furnitures via a 

smart phone 

6 furniture classes Indoor objects 

Han et al.’s 

[3] 

Meeting room, church, 

office, 3 buildings 
Wall, Ceiling, Floor, 

Cylinder, Room 

Core structure elements 

Zeng et al.’s 

[4] 

Buildings under 

construction,  Church, 

Office 

Wall, Window, Door, 

Column, Roof 

Structure elements 

(manually expandable) 

Raamac Lab 

dataset [5] 

Offices, Conference 

rooms, Storage 
Wall, Ceiling, Floor, 

Column, Beam, Pipe 

Sructure elements 

CV4AEC 91 large-scale building 

areas with clutter 
Wall, Floor, Ceiling, 

Door, Room, Stairs 

Core structure elements, 

Topological elements 

 

Table 2 briefly summarizes the related work from the aspects of classifier type, end results, and 

evaluation metric. Table 2 also demonstrates how our hybrid approach of semantic and geometric 

reasoning on CV4ACE differs in those points. Point-level refers to a classification result for each 

scanned point, while object-level refers to a classification result for building objects which is 

processed from clustered points. Other Scan-to-BIM related research based on learning algorithms 

exist [6]–[8], but most of them aim at predicting point-level classes, rather than generating building 

models. Beyond simply classifying the points with semantic information, we proposed the method 

to assemble the point chunks and fabricate them into semantically meaningful building objects, 

including topological relationships. 

Table 2. Comparison of different Scan-to-BIM methods 

Method Classifier End results Evaluation metric Dependency 

[1] Geometric  Points with 

semantic info.  

Point-level semantic 

eval., and room parsing 

Open source 

[2] Geometric  Points clustered in 

object unit 

Object-level eval. Autodesk 

Revit 

[3] Geometric  LoD 2 model in 

CityGML  

Point-level structure 

similarity 

 

[9] PointNet/ 

DGCNN 

BIM Point-level semantic 

eval. 

Autodesk 

Revit, 

Trimble, FME 
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Ours PointNet++ & 

Geometric  
Floorplan Object-level semantic 

eval, topological eval. 

Open source 

3. SEMANTIC SEGMENTATION 

3.1. Pseudo-annotation 

One of the biggest barriers to utilizing a volumetric building point cloud dataset is the demanding 

annotation task due to the large number of points and the difficulty of distinguishing 3D objects of 

interest from clutter. In a situation where it is difficult to obtain labeled data, we propose a pseudo-

annotating method using incomplete existing 2D or 3D drawings.  

In the CV4AEC challenge, the training data that is given is only a set of 2D drawings showing 

polylines of certain object classes such as a wall, door, and stair. To convert this data into a format 

that can be used to train 3D semantic segmentation models, we translated those polylines into 3D 

point clouds and mapped object classes into individual points with offsets. First, based on the 

histogram pattern in the z-axis, the floor height can adaptively determined, through which the floor 

and ceiling classes can be obtained (Figure 2). The wall, door, and stair points are then annotated 

based on the projected 2D drawings. Finally, the rest of the points are designated as the clutter 

class. Through this pseudo-annotation process, the point-level annotations can be obtained, albeit 

with imperfect accuracy.  

In general, as-is scan data is likely to show a discrepency with the as-planned model because of 

the indoor temporary objects and clutter. For this reason, our method does not fully depend on 

semantic segmentation results, and supplements the results using geometric reasoning.  

 

  

Before After 

Figure 2. Pre-processing of removing noise, identifying the ceiling and floor points 

3.2. 3D deep neural network 

In training the 3D deep learning classifier, we adopt the PointNet++ architecture [10], one of the 

most widely-used deep networks for point cloud semantic segmentation. We perform point-level 

classification using the target classes of the core structure elements and clutter. On the other hand, 

the “stair” class is only detected based on geometric reasoning because of class imbalance in the 

training data. One advantage of applying semantic segmentation is having the ability to remove 

clutter, thus enabling post-processing of geometric reasoning to gain higher confidence in detecting 

building elements with clear boundaries. 
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4. GEOMETRIC REASONING 

4.1. Wall and door detection 

Starting from a extracted point cloud of only wall points, obtained from the semantic 

segmentation results, we generated wall and door instances to be used for reconstructing the floor 

plan. As the wall point set already excludes most noise and clutter, we are able to use the 

assumption that walls consist of smooth planer surfaces (Figure 3). First, we specified wall 

candidates by extracting only the points that have normal vectors that are perpendicular to the floor. 

The wall candidates are segmented into individual wall objects using a region growing algorithm, 

in which neighboring points with similar normal vectors are grouped together to form wall 

instances. Finally, as a post-processing step, parametric filtering based on cluster size and wall 

height was performed to remove outliers and increase reliability. 

 

 

Figure 3. Wall detection stages: (a) normal estimation, (b) region growing, and (c) parametric 

filtering. 

 

Door detection is challenging because the CV4AEC challenge criterion specifies to detect doors 

regardless of whether they are open, closed, or even missing from the point cloud. In this situation, 

we perform door detection by measuring the empty space in the wall objects (Figure 4). A vertical 

histogram is applied to determine square empty spaces in the plane of the wall that do not contain 

any points and would thus indicate the presence of a doorway. Next, parametric filtering is applied 

to filter out false detections based on door size and aspect ratio.  

 

 

Figure 4. Door detection from the individual wall object 

4.2. Stairway detection 

To perform stairway detection, we applied the approach of searching for geometrical areas that 

resembles risers and treads that appear a row [11]. In this way, an area detected as a specific shape 

is regarded as a stairway. In addition, we tuned the algorithm to normalize point coordinates 

through adaptively moving the center coordinate, and removed outliers based on the sequence of 

risers and treads. 
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4.3. Floorplan drawing 

The output floorplan is generated using the detected objects of walls, doors, and stairs, according 

to the format of the CV4AEC challenge. The reconstructed floorplan basically consists of a 2-fold 

polyline representing inner and outer surface of each object. All the detected objects are 

individually segmented on a per-room basis. To obtain 2D lines from the individually detected 

building objects from the previous section, we applied a 2-fold RANSAC algorithm to the top view 

of the 3D points cloud, thus projecting point objects into sets of 2D polylines. For stairway objects, 

each riser and tread is represented as a line in the floorplan.  

5. EXPERIMENTS 

5.1. Dataset 

This research utilizes the CV4AEC dataset, consisting of 91 large-scale building point clouds. 

Training, validation, and test set were divided into 49, 21, and 21 point clouds, respectively, while 

preserving a even distribution of building types. We utilized the validation set to avoid over-fitting 

in deep learning section and find an optimistic parameters for parametric filtering 

The dataset shows diverse properties in building type and appearance. The building types range 

from offices to parking lots to rooftops, thus complicating the process of parametric geometric 

reasoning. Besides, the type of raw data available is different per building; some point clouds do 

not have color information and some do not have floor and ceiling surface points (Figure 5). More 

importantly, the dataset is obtained from real laser-scanning, which leads to the point clouds having 

a significant amount of occlusion, missing spots, noise, and clutter. 

 

5.2. Floorplan Reconstruction 

We implemented the proposed framework fully automatically, and tuned the parametric filtering 

threshold using a grid search approach on the validation set. The qualitative results of the proposed 

floorplan generation framework for a few sample buildings are provided in Figure 5. 

 
 

(a) (b) 
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(c) (d) 

Figure 5. Floorplan reconstruction results 

5.3. Evaluation 

The evaluation results on the proposed framework (Table 3) can be found in 

https://cv4aec.github.io/. The evaluation metrics consist of both geometric and topological metrics. 

Geometric metrics include precision and recall at 2cm, 5cm, 10cm margins for each pixel in the 

generated floorplan. While for the topological metrics, each enclosed space is regarded as a room, 

and  the IoU, Warping error, and Betti error are measured on the detected rooms. The proposed 

method ranks between 2nd and 3rd compared to other methods on geometric metrics. The proposed 

method achieves the best result on topological metrics such as warping error and Betti error. 

Table 3. Qualitative evaluation of floorplan reconstruction 

 Prec. 

(2cm) 

Prec. 

(5cm) 

Pre. 

(10cm) 

Rec. 

(2cm) 

Rec. 

(5cm) 

Rec. 

(10cm) 

IoU Warping 

Error 

Betti 

Error 

  

[5] 1.14% 4.23% 6.52% 7.09% 25.57% 38.59% 11.98% 0.268 1.204   

[3] 5.73% 23.39% 38.54% 2.09% 8.48% 13.59% 56.88% 0.256 1.186   

Ours 2.18% 9.69% 19.12% 0.88% 0.41% 8.18% 32.75% 0.232 1.132   

 

6. CONCLUSION 

This research proposes a floorplan reconstruction framework for large-scale building point 

clouds and demonstrates that the hybrid approach of data-driven model and geometric reasoning 

can robustly improve the performance, especially in situations where the target building point 

clouds have diverse types and contain significant noise and clutter. Moreover, we implemented the 

framework in a fully automated manner, which is a significant advantage compared to many other 

methods for generating building models which require intermediate manual steps. The proposed 

automated framework paired with a pseudo-annotation method, being applicable even when the 

training data or model is incomplete, can serve as a stepping stone for increasing research interest 

in scanned building data and reconstruction of indoor environments. 

There is much room for future research, as our results are still limited and the reconstruction 

accuracy is not sufficient for a real-world Scan-to-BIM application. For example, the class 

imbalance is an inevitable issue in point cloud processing because most of the scanned points come 

from wall, floor, or ceiling classes whereas door and stair classes are only a small minority in the 

scan data. In future work, we will approach this problem with advanced data augmentation methods 
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and an improved loss function, thus enabling a better balance between the data-driven model and 

geometric reasoning. 
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