DOI QR코드

DOI QR Code

Fabrication of All-fiber 7x1 Pump Combiner Based on a Fiber Chip for High Power Fiber Lasers

고출력 광섬유 레이저를 위한 광섬유 칩 기반 All-fiber 7x1 펌프 광 결합기 제작

  • 최인석 (한국전자통신연구원 ICT소재부품연구소) ;
  • 전민용 (충남대학교 물리학과) ;
  • 서홍석 (한국전자통신연구원 ICT소재부품연구소)
  • Received : 2017.01.17
  • Accepted : 2017.07.18
  • Published : 2017.08.25

Abstract

In this paper, we report measured results for an all-fiber $7{\times}1$ pump combiner based on an optical fiber chip for high-power fiber lasers. An optical-fiber chip was fabricated by etching a fiber, having core and cladding diameters of 20 and $400{\mu}m$, in the longitudinal direction. To both ends of the etched chip, we spliced input and output fibers. First, we tied together seven optical fibers, having core and cladding diameters of 105 and $125{\mu}m$ respectively, in a cylindrical bundle and spliced them to the $375-{\mu}m$ end of the optical-fiber chip. Then, we attached an output DCF with core and cladding diameters of 25 and $250{\mu}m$ to the $250-{\mu}m$ end of the optical-fiber chip. Finally, the fabricated $7{\times}1$ pump combiner showed an average optical coupling efficiency of about 90.2% per port. This chip-based pump combiner may replace conventional pump combiners by massive production of fiber chips.

본 논문에서는 고출력 광섬유 레이저를 위한 광섬유 칩 기반 all-fiber $7{\times}1$ 펌프 광 결합기의 제작에 대하여 보고한다. 광섬유 칩은 코어, 클래딩 직경이 각각 20, $400{\mu}m$인 광섬유를 길이 방향으로 식각하여 제작하였다. 7개의 입력 광섬유 부분은 105, $125{\mu}m$의 코어, 클래딩 직경을 가진 7개의 입력 광섬유를 원통형 다발로 제작하여 광섬유 칩의 $375{\mu}m$부분에 융착하였고, 1개의 출력 광섬유는 코어, 클래딩 직경이 각각 25, $250{\mu}m$ 광섬유를 광섬유 칩의 $250{\mu}m$부분에 융착하여 최종적으로 $7{\times}1$ 펌프광 결합기를 제작하였다. 제작된 광섬유 칩 기반 $7{\times}1$ 펌프 광 결합기의 포트별 평균 광 전달 효율은 약 90.2%로 나타났다.

Keywords

References

  1. M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
  2. Y. Ma, X. Wang, J. Leng, H. Xiao, X. Dong, J. Zhu, W. Du, P. Zhou, X. Xu, L. Si, Z. Liu, and Y. Zhao, "Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique," Opt. Lett. 36(6), 951-953 (2011). https://doi.org/10.1364/OL.36.000951
  3. Y. Shamir, R. Zuitlin, Y. Sintov, and M. Shtait "3 kW-level incoherent and coherent mode combining via all-fiber fused Y-couplers", in Proc. Frontiers in Optics (Optical Society of America 2012), paper FW6C.
  4. S. M. Redmond, D. J. Ripin, C. X. Yu, S. J. Augst, T. Y. Fan, P. A. Thielen, J. E. Rothenberg, and G. D. Goodno, "Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam", Opt. Lett. 37(14), 2832-2834 (2012). https://doi.org/10.1364/OL.37.002832
  5. A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, "A monolithic cladding pumped holmium-doped fibre laser," in CLEO: 2013, OSA Technical Digest (Optical Society of America, 2013), paper CW1M.1
  6. V. I. Kopp, J. Park, M. Wlodawski, J. Singer, and D. Neugroshl, "Polarization maintaining, high-power and high efficiency (6+1) ${\times}$ 1 pump/signal combiner", Proc. SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 89612N (2014).
  7. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, "Double clad tapered fiber for high power applications," Opt. Express 16(3), 1929-1944 (2008). https://doi.org/10.1364/OE.16.001929
  8. C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, and A. Tünnermann, "High-power tandem pumped fiber amplifier with an output power of 2.9 kW," Opt. Lett. 36(16), 3061-3063 (2011). https://doi.org/10.1364/OL.36.003061
  9. C. A. Codemard, J. K. Sahu, and J. Nilsson, "Tandem cladding-pumping for control of excess gain in Ytterbiumdoped fiber amplifiers," IEEE J. Quantum Electron. 46(12), 1860-1869 (2010). https://doi.org/10.1109/JQE.2010.2076408
  10. Z. Huang, Y. Zhang, Y. Deng, H. Lin, Q. Li, L. Zhao, and J. Wang, "Tapered inner-cladding fiber design for uniform heat deposition in Ytterbium-doped fiber amplifiers", J. Opt. 17(4), 045701-045707 (2015). https://doi.org/10.1088/2040-8978/17/4/045701
  11. S. Yin, P. Yan, and M. Gong, "End-pumped 300 W continuouswave ytterbium-doped all-fiber laser with master oscillator multi-stage power amplifiers configuration," Opt. Express 16(22), 17864-17869 (2008). https://doi.org/10.1364/OE.16.017864
  12. J. K. Kim, C. Hagemann, T. Schreiber, T. Peschel, S. Bohme, R. Eberhardt, and A. Tunnermann, "Monolithic all-glass pump combiner scheme for high-power fiber laser systems," Opt. Express 18(12), 13194-13203 (2010). https://doi.org/10.1364/OE.18.013194
  13. B. Shaw, R. Gattass, F. Kung, D. Gibson, V. Nguyen, G. Chin, L. Busse, I. Aggarwal, and J. S. Sanghera, "Arsenic sulfide 7 ${\times}$ 1 multimode fiber combiner," in Advanced Solid- State Lasers Congress, M. Ebrahim-Zadeh and I. Sorokina, eds., OSA Technical Digest (Optical Society of America, 2013), paper JTh2A.15.
  14. H.-S. Seo, J. T. Ahn, B. J. Park, J.-H. Song, and W. Chung, "Efficient pump beam multiplexer based on single-mode fibers", Jpn. J. Appl. Phys. 51(1), 010203 (2012). https://doi.org/10.7567/JJAP.51.010203