• Title/Summary/Keyword: Laser beam

Search Result 2,056, Processing Time 0.032 seconds

Strengthening of Steel Sheets for Automobile by $CO_2$ Laser Beam Irradiation (자동차용 강판의 $CO_2$ 레이저 빔 조사 강화)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jung-Oh;Oh, Sang-Jin;Cho, Won-Seok;Lee, Doo-Hwan;Shin, Chul-Soo
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • The laser strengthening of 35kgf/㎟ and 60kgf/㎟ grade steel sheets is investigated by using CO$_2$ laser beam irradiation. The increase of tensile strength is dominated by the number of fully penetrated melting line. Also. the optimal laser input energy(hardness) and the number of melting line (melting width) are important variables for laser strengthening. Local strengthening by laser beam may be effective for the weight reduction of components where the tailored welded blank can not be applied.

  • PDF

Laser Welding Parameter Variations and its Application for Plastic Adhesion

  • Park, Sung-Jin;Park, Sung-Joon;Park, Hae-Young;Park, Jae-Wook;Sim, Ji-Young;Choi, Jin-Young;Kim, Hee-Je
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.112-117
    • /
    • 2007
  • a parametric investigation was conducted to evaluate the effect of the laser beam for plastic adhesion. To determine the best condition for plastic adhesion, the $CO_2$(wavelength $10.6{\mu}m$) and nd:yag(wavelength $10.6{\mu}m$) laser were experimented with. From the experiment results obtained, the nd:yag laser was revealed to be the most suitable for plastic adhesion. In this study, three adhesion parameters such as input power level, working time of laser beam and pps(pulse per second) were systematically adjusted for suitable adhesion. From these experiments, it was observed that the target plastic melted and was evaporated by the nd:yag laser. Furthermore, the relationships between adhesive surface by laser beam and above three parameters were discovered.

TSV Formation using Pico-second Laser and CDE (피코초 레이저 및 CDE를 이용한 TSV가공기술)

  • Shin, Dong-Sig;Suh, Jeong;Cho, Yong-Kwon;Lee, Nae-Eung
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

A Study on the Development of the Rotary and Linear Laser Modules (회전식 및 직선식 레이저 모듈 개발에 관한 연구)

  • Sim, Min-Seop;Hwang, Seong-Ju;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.119-123
    • /
    • 2014
  • Recently, laser processing technologies have been developed in many different industrial fields. The laser processing technologies are widely being applied such as laser assisted machining, cladding, heat treatment and coating. In the laser modules of the laser assisted machining system, laser lens is very important for accuracy and productivity of product. As the laser beam size, shape and focusing distance change, heat input energy of preheating point can be changed, the laser module of the laser assisted machining system should be equipped with various lenses differing beam size, beam shape and focusing distance. In this study, the rotary and linear laser modules are suggested. The finite element analysis is carried out to certify the static and dynamic stabilities of the developed laser modules. Finally, the rotary and linear laser modules have been fabricated successfully using the analysis results.

Laser Micro-Joining and Soldering (레이저 마이크로 접합 및 솔더링)

  • Hwang, Seung Jun;Kang, Hye Jun;Kim, Jeng O;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • In this paper, the principles, types and characteristics of the laser and laser soldering are introduced. Laser soldering methods for electronics, metals, semiconductors are also presented. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled beam. Demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro joint. Laser absorption ratio depends on materials, and each material has different absorption or reflectivity of the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance. In this paper, the performance of Nd:YAG laser soldering is compared to the hot blast reflow. Meanwhile, a diode laser gives different wavelength and smaller parts with high performance, but it has various reliability issues such as heat loss, high power, and cooling technology. These issues need to be improved in the future, and further studies for laser micro-joining and soldering are required.

Chaotic State of a C.W.$CO_2$ laser Modulated by a Low Frequency Modulator (낮은 주파수로 변조된 C.W .$CO_2$ 레이저 빛의 혼란상태)

  • 김칠민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.73-75
    • /
    • 1989
  • Chaotic states of a low-frequency modulating C.W .Co2 laser beam is observed. The output behaviors appear quasi-periodicity and chaotic states when the laser beam is modulated from 100Hz to 1000Hz by using an intracavity chopper. And the output characteristics of the laser beam show a route to chaos as increasing input power when the modulation speed is 500Hz.

  • PDF

A study on the Fabrication of Graded-Boundary Ni-Cr/Steel Material by Laser Beam (레이저빔에 의한 계면경사 Ni-Cr/steel 재료 제조에 관한 연구)

  • 김재현;김도훈
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • For a development purpose of thick metal / metal Graded-Boundary Materials(GBM), a basic research on the fabrication of Ni-Cr/steel GBM was carried out by a laser beam and its mechanical properties and thermal characteristics were investigated. In order to produce a compositionally graded boundary region between substrate steel and added Ni-Cr alloy, a series of surface alloying treatments was performed with a high power CO$_2$ laser beam. Ni-Cr sheet was placed on a low carbon steel plate(0.18%C), and then a CO$_2$ laser beam was irradiated on the surface to produce a homogeneous alloyed layer. On this first surface-alloyed layer, another Ni-Cr sheet was placed and then the CO$_2$ laser beam was irradiated again to produce second surface-alloyed layer. Sequential repetitions of laser surface alloying treatment 4 times resulted in a graded-boundary region with the thickness of about 1.4mm. Simultaneous concentration profiles of different kinds of alloying elements(Ni and Cr) showed from 42%Ni, 45%Cr and 13%Fe on surface region to 0%Ni, 0%Cr and 99%Fe in substrate region. Also a thermal conductivity gradient resulted in graded-region and its value changed from 0.03㎈/cm s$\^{C}$ in surface region to 0.1㎈/cm s$\^{C}$ in substrate region. Microstructural observation showed that any visible root porosities and solidification shrinkage cracks were not formed in graded region between alloyed layer and substrate region during rapid cooling.

  • PDF

Performance Experiment of Electron Beam Convergence Instrument (Finishing 용 전자빔 집속 장치의 성능 실험)

  • Lim, Sun Jong
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.6-8
    • /
    • 2015
  • Finishing process includes deburring, polishing and edge radiusing. It improves the surface profile of specimen and eliminates the alien substance on surface. Deburring is the elimination process for debris of edges. Polishing lubricates surfaces by rubbing or chemical treatment. There are two types for electron finishing. The one is using pulse beam. The other is using the convergent and scanning electron beam. Pulse type device appropriates the large area process. But it does not control the beam dosage. Scanning type device has advantages for dosage control and edge deburring. We design the convergence and scan type. It has magnetic lenses for convergence and scan device for scanning beam. Magnetic lenses consist of convergent and objective lens. The lenses are designed by the specification(beam size and working distance). In this paper, we evaluate the convergence performance by pattern process. Also, we analysis the results and important factors for process. The important factors for process are beam size, pressure, stage speed and vacuum. These results will be utilized into systematizing pattern shape and the factors.

Operating System Design of Multi Beam Control System with Miniaturized Electron Beam Columns (초소형 전자빔을 이용한 멀티 전자빔 운영 시스템 설계)

  • Lim, Sun Jong;Kim, Ho Seob
    • Laser Solutions
    • /
    • v.18 no.4
    • /
    • pp.12-16
    • /
    • 2015
  • The research on multi electron beam systems is being carried out by various methods. We are studying multi electron beam system using miniaturized electron beam columns. The column consists of electrostatic lenses, electrostatic deflector and tip emitter. Our operating system controls 4 column array, captures images of each column and maintains the instrument. We present the usefulness of our operating system for multi columns by capturing images of each column.