• Title/Summary/Keyword: Laser Induced Fluorescence

Search Result 249, Processing Time 0.027 seconds

Combustion Flame Diagnostics Using Laser-Induced Fluorescence (레이저 유도 형광법에 의한 연소화염 진단기법 연구)

  • Kim, T.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.24-29
    • /
    • 1995
  • A laser system and signal aquisition system to use a laser-induced fluorescence technique were arranged to measure NO concentration. To identify the NO fluorescence signal, verification of the fluorescence was performed through use of comparison of the signals taken both in a undoped and doped calibration flames. Finally, the spatial NO number densities in partially premixed flames were found as a function of fuel-tube equivalence ratio(${\phi}_c$) and overall equivalence ratio(${\phi}_o$).

  • PDF

An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence (아세톤 형광을 이용한 공연비 측정 기법 연구)

  • Park Seungjae;Huh Hwanil;Oh Seungmook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

In-situ Monitoring of PAHs in the Environment Using Laser-Induced Fluorescence Spectroscopy (Laser-Induced Fluorescence spectroscopy을 이용한 환경 중 PAHs 화합물의 실시간 현지 모니터링)

  • ;F. Lewitzka
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.358-359
    • /
    • 2001
  • PAHs는 불완전연소 과정과 주유소나 타르 생산공장 주변에서 발생하는데 돌연변이와 발암의 잠재력으로 인하여 특별한 관심이 요구되는 것들이고 US-EPA에서도 우선 오염물질로 선정되었다. PAHs를 검출하는 훌륭한 기술들이 존재하나, 이러한 기술들은 연속적인 모니터링이 요구되거나 많은 수의 샘플을 분석해야할 경우에 상당한 양의 비용과 시간이 요구된다. 그러나 분광학 기술을 바탕으로 한 Laser-Induced Fluorescence(LIF) spectroscopy를 이용한 방법은 실시간으로 연속적인 측정을 가능하게 할 뿐 아니라 여러 가지 PAHs, 유류오염물질 등의 물질을 동시에 측정할 수 있다. (중략)

  • PDF

A Study on Laser Induced Fluorescence and Coagulation in Particle Transport Mode (입자 이동 방식에서 Laser Induced Fluorescence와 뭉침에 관한 연구)

  • Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.340-346
    • /
    • 2006
  • The influences of fluorescence, scattering, and flocculation in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by the spectroscopy of laser induced fluorescence (LIF). The effects of optical properties in scattering media have been found by the optical $parameters({\mu}_s,\;{\mu}_a,\;{\mu}_t)$. Flocculation is an important step in many solid-liquid separation processes and is widely used. When two particles approach each other, interactions of several colloid particles can come into play which may have major effect on the flocculation and LIF process, The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of scatterer it has been found that the slope decays exponentially as a function of distance from laser source to detector. It may also aid in designing the best model for oil chemistry, biopharmaceutical products, laser medicine and application of medical engineering on LIF and coagulation in particle transport mode.

Measurement of Soot and PAH in the Diffusion Flame Using Laser Diagnostics (레이저 진단을 이용한 확산화염에서의 매연 및 PAH 의 측정기법)

  • Yoon Seung Suk;Lee Sang Min;Chung Suk Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.108-111
    • /
    • 2004
  • Laser induced incandescence and laser induced fluorescence techniques have been investigated to measure the concentrations of soot and PAH, respectively. The Nd:YAG and dye lasers were used to form a sheet beam, and its wavelength were modulated to obtain a optimized signals of soot and PAH. Results showed that the relative size groups of soot and PAH can be measured by using our laser techniques.

  • PDF

Diagnostics of Magnetron Sputtering Plasmas: Distributions of Density and Velocity of Sputtered Metal Atoms

  • Sasaki, Koichi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.98-99
    • /
    • 2012
  • Deposition of thin films using magnetron sputtering plasmas is a well-developed, classical technology. However, detailed investigations using advanced diagnostics are insufficient in magnetron sputtering, in comparison with plasma-aided dry etching and plasma-enhanced chemical vapor deposition. In this talk, we will show examples of diagnostic works on magnetron sputtering employing metal targets. Diagnostic methods which have fine spatial resolutions are suitable for magnetron sputtering plasmas since they have significant spatial distributions. We are using two-dimensional laser-induced fluorescence spectroscopy, in which the plasma space is illuminated by a tunable laser beam with a planer shape. A charge-coupled device camera with a gated image intensifier is used for taking the picture of the image of laser-induced fluorescence formed on the planer laser beam. The picture of laser-induced fluorescence directly represents the two-dimensional distribution of the atom density probed by the tunable laser beam, when an intense laser with a relatively wide line-width is used. When a weak laser beam with a relatively narrow linewidth is used, the laser-induced fluorescence represents the density distribution of atoms which feel the laser wavelength to be resonant via the Doppler shift corresponding to their velocities. In this case, we can obtain the velocity distribution function of atoms by scanning the wavelength of the laser beam around the line center.

  • PDF

Fuel Stratification Process in a Lean Burn Internal Combustion Engine by Using Planar Laser Induced Fluorescence (PLIF를 이용한 희박연소엔진에서의 연료 성층화에 관한 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2003
  • Mixture formation in the cylinder of a lean bum engine has been observed by Laser Induced Fluorescence technique. XeCl laser (308nm) was used to produce a laser sheet. 3-pentanone has been added to iso-octane fuel to produce fluorescence, the intensity of which is proportional to the concentration of the fuel. The laser sheet was introduced through the piston window and the fuel distribution in the vertical plane was observed through a side window. Comparison has been made for the cases of selected fuel injection timing as 0, 360, 405, and 450 CA. For the case of 0 and 360 CA injection, uniform fuel distribution in the combustion chamber has been obtained at the ignition time which is favorable for the high load mode. And the late injection cases, 405 and 450 CA, revealed the stratified formation of rich mixture around the spark plug. That extends the lean misfire limit and reduces cyclic variation in the low load mode.

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Laser-Induced Fluorescence Characterization for Real-Time Microplastic Counting (실시간 미세플라스틱 카운팅을 위한 레이저 유도 형광 특성 분석)

  • Ko, Seunghyeon;Oh, Geum-Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.149-154
    • /
    • 2022
  • In this paper, laser-induced fluorescence properties of four plastics were characterized through spectrometer analysis for real-time microplastic counting. Recently, environmental problems related to microplastics have emerged. In order to detect microplastics, analysis methods such as FT-IR and Raman are used. However, they have the disadvantages of being time-consuming and requiring a pretreatment process. In most plastic products on the market, 10% to 30% of plasticizers and reinforcing agents are added. Therefore, most microplastics present in seawater and freshwater emit fluorescence signals by 270 nm UV light source regardless of their type due to their molecular structure due to additives. Real-time microplastics counting is possible more easily by using the proposed laser-induced fluorescence detection method because of the fluorescence expression characteristic of 340 nm that appears due to the plasticizer of plastics.