Acknowledgement
This research was funded by the Korea Electric Power Corporation (Grant Number: R18XA06-79), and was also partially supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Number: NRF-2017M3A9E2056373; NRF-2019R1F1A1058851).
References
- R. Anderson and J. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524-527 (1983). https://doi.org/10.1126/science.6836297
- G. Jori and J. D. Spikes, "Photothermal sensitizers: possible use in tumor therapy," J. Photochem. Photobiol. B 6, 93-101 (1990). https://doi.org/10.1016/1011-1344(90)85078-B
- L. O. Svaasand, C. J. Gomer, and E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121-128 (1990). https://doi.org/10.1007/BF02031373
- M. Nikfarjam, V. Muralidharan, and C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208-223 (2005). https://doi.org/10.1016/j.jss.2005.02.009
- E. S. Day, J. G. Morton, and J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, 074001 (2009). https://doi.org/10.1115/1.3156800
- F. A. Merchant and A. Periasamy, " Fluorescence Imaging," in Microscope Image Processing, Q. Wu, F. A. Merchant, and K. R. Castleman, Eds. (Academic Press, USA. 2008), Chapter 12, pp. 247-297.
- U. Mahmood, C.-H. Tung, J. A. Bogdanov, and R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866-870 (1999). https://doi.org/10.1148/radiology.213.3.r99dc14866
- H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, and J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148-153 (2013). https://doi.org/10.1038/nbt.2468
- S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, and X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014). https://doi.org/10.1038/srep04384
- A. Klein, W. Baumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, and P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369-376 (2012). https://doi.org/10.1002/lsm.22022
- G. Shafirstein, W. Baumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, and R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208-1215 (2012). https://doi.org/10.1002/ijc.26126
- V. L. Dzurinko, A. S. Gurwood, and J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743-755 (2004).
- C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, and N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, 13958 (2017). https://doi.org/10.1038/s41598-017-14401-0
- R. C. Benson and H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159-163 (1978). https://doi.org/10.1088/0031-9155/23/1/017
- T. Desmettre, J. M. Devoisselle, and S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15-27 (2000). https://doi.org/10.1016/S0039-6257(00)00123-5
- L. Xiao, X. Chen, X. Yang, J. Sun, and J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273-4288 (2020). https://doi.org/10.1021/acsapm.0c00711
- B. Liu, C. Li, B. Xing, P. Yang, and J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884- 4894 (2016). https://doi.org/10.1039/C6TB00799F
- Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, and N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784-3796 (2017). https://doi.org/10.1039/C6NR09042G
- D. Maziukiewicz, B. F. Grzeskowiak, E. Coy, S. Jurga, and R. Mrowczynski, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019). https://doi.org/10.3390/biomimetics4010003
- C. W. Song, H. J. Park, C. K. Lee, and R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761-767 (2005). https://doi.org/10.1080/02656730500204487
- A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, and C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798-7806 (2007). https://doi.org/10.1158/0008-5472.CAN-07-0203
- X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, and J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573-1579 (2011).
- S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, and W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756-763 (2018). https://doi.org/10.1080/02656736.2017.1370136
- A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, and W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019). https://doi.org/10.3390/ma12050779