Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.2.6

Laser-Induced Fluorescence Characterization for Real-Time Microplastic Counting  

Ko, Seunghyeon (Jeju Special Self-Governing Province, Korea Institute of Industrial Technology)
Oh, Geum-Yoon (Jeju Special Self-Governing Province, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.2, 2022 , pp. 149-154 More about this Journal
Abstract
In this paper, laser-induced fluorescence properties of four plastics were characterized through spectrometer analysis for real-time microplastic counting. Recently, environmental problems related to microplastics have emerged. In order to detect microplastics, analysis methods such as FT-IR and Raman are used. However, they have the disadvantages of being time-consuming and requiring a pretreatment process. In most plastic products on the market, 10% to 30% of plasticizers and reinforcing agents are added. Therefore, most microplastics present in seawater and freshwater emit fluorescence signals by 270 nm UV light source regardless of their type due to their molecular structure due to additives. Real-time microplastics counting is possible more easily by using the proposed laser-induced fluorescence detection method because of the fluorescence expression characteristic of 340 nm that appears due to the plasticizer of plastics.
Keywords
Micro plastics; Laser induced fluorescence; Spectrometer; Real-time; Counting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Lv, L. He, S. Jiang, J. Chen, C. Zhou, J. Qu, Y. Lu, P. Hong, S. Sun, and C. Li, Sci. Total Environ., 728, 138449 (2020). [DOI: https://doi.org/10.1016/j.scitotenv.2020.138449]   DOI
2 A. L. Andrady, Mar. Pollut. Bull., 62, 1596 (2011). [DOI: https://doi.org/10.1016/j.marpolbul.2011.05.030]   DOI
3 F. Corami, B. Rosso, E. Morabito, V. Rensi, A. Gambaro, and C. Barbante, Sci. Total Environ., 797, 148937 (2021). [DOI: https://doi.org/10.1016/j.scitotenv.2021.148937]   DOI
4 D. H. Jeong, B. Ju, W. Lee, H. Chung, J. Park, and C. Kim, J. Korean Soc. Water Wastewater, 32, 337 (2018). [DOI: https://doi.org/10.11001/jksww.2018.32.4.337]   DOI
5 J. Shan, J. Zhao, Y. Zhang, L. Liu, F. Wu, and X. Wang, Anal. Chim. Acta, 1050, 161 (2019). [DOI: https://doi.org/10.1016/j.aca.2018.11.008]   DOI
6 J. L. Xu, K. V. Thomas, Z. Luo, and A. A. Gowen, Trac-Trend. Anal. Chem., 119, 115629 (2019). [DOI: https://doi.org/10.1016/j.trac.2019.115629]   DOI
7 M. Than Htun, J. Polym. Res., 19, 9823 (2012). [DOI: https://doi.org/10.1007/s10965-012-9823-7]   DOI
8 J. S. Kim, H. J. Lee, S. K. Kim, and H. J. Kim, Environ. Sci. Technol., 52, 12819 (2018). [DOI: https://doi.org/10.1021/acs.est.8b04180]   DOI
9 X. Sun, J. Liang, M. Zhu, Y. Zhao, and B. Zhang, Environ. Pollut., 242, 585 (2018). [DOI: https://doi.org/10.1016/j.envpol.2018.07.014]   DOI
10 V. Spizzichino, L. Caneve, F. Colao, and L. Ruggiero, Appl. Spectrosc., 70, 1001 (2016). [DOI: https://doi.org/10.1177/0003702816641267]   DOI