• 제목/요약/키워드: Laser Bonding

검색결과 175건 처리시간 0.023초

다이오드레이저를 이용한 디스플레이 모듈 내 이방성 전도 필름(ACF) 접합 기술에 관한 연구 (Study on a New ACF Bonding Methods in LCD Module Using a High Power Diode Laser)

  • 류광현;서명희;남기중;곽노흥
    • 한국레이저가공학회지
    • /
    • 제8권3호
    • /
    • pp.21-26
    • /
    • 2005
  • A bonding process between tape-carrier package and a glass panel with anisotropic conductive film (ACF) has been investigated by making use of high power diode laser as a heat source for cure. The results from modeling of process and from optical properties of layers showed that heat absorbed from polyimide film surface and ACF layer is dominant source of curing during laser illumination. Laser ACF bonding has better bonding quality than conventional bonding in view of peel strength, flatness, pressure unbalance and processing time. New ACF bonding processes by making use of high power diode laser are proposed.

  • PDF

폴리머 마이크로 장치에 대한 레이저 투과 마이크로 접합 (Analysis of Transmission Infrared Laser Bonding for Polymer Micro Devices)

  • 김주한;신기훈
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.55-60
    • /
    • 2005
  • A precise bonding technique, transmission laser bonding using energy transfer, for polymer micro devices is presented. The irradiated IR laser beam passes through the transparent part and absorbed on the opaque part. The absorbed energy is converted into heat and bonding takes place. In order to optimize the bonding quality, the temperature profile on the interface must be obtained. Using optical measurements of the both plates, the absorbed energy can be calculated. At the wavelength of 1100nm $87.5\%$ of incident laser energy was used for bonding process from the calculation. A heat transfer model was applied for obtaining the transient temperature profile. It was found that with the power of 29.5 mW, the interface begins to melt and bond each other in 3 sec and it is in a good agreement with experiment results. The transmission IR laser bonding has a potential in the local precise bonding in MEMS or Lab-on-a-chip applications.

열가소성 플라스틱의 흡수체를 이용한 레이저 접합 (Laser Welding of Thermoplastics Using the Absorbing Materials)

  • 서명희;류광현;남기중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.430-433
    • /
    • 2005
  • Laser bonding between similar and dissimilar thermoplastics has been investigated by making use of laser transmission weld technique. Spot welding of two layers of plastic materials has been demonstrated by using of a high-quality diode-laser with 808nm wavelength. Weld areas increases according to power density, exposure time. The results of peel out test show that peel strengths increase with the area of molten plastics. Layers, which have the same chemical properties, have good bonding qualities. A bonding method which dye film is coated on the interface is used for laser bonding between plastics with high transmission for laser wavelength. Laser transmission bonding is worthy of attention because it is not in contact, requires a few tooling devices, allows a flexible energy delivery and produces nearly invisible welds

  • PDF

유리액를 이용한 레이저 선택 접합 (Laser bonding using liquid glass)

  • 김주한;이제훈;김향태
    • 한국레이저가공학회지
    • /
    • 제11권3호
    • /
    • pp.1-4
    • /
    • 2008
  • A selective laser micro bonding process using liquid glass (methylsilsesquioxane) was developed and the results are analysed. The liquid glass can be solidified with Nd:YAG laser irradiation and it can be applied for joining two glass substrates. A bonding thickness of a few micrometers can be achieved. The appropriate laser power density (or this process is around 40-60 $kW/cm^2$ and its bonding force is 1000-1200 $gf/mm^2$. This process can be applied for bonding micro devices such as micro bio-sensors or display products. Its advantages and limitations are presented and discussed.

  • PDF

다구찌법을 이용한 IR 레이저 Flip-chip 접합공정 최적화 연구 (A Study on the Optimization of IR Laser Flip-chip Bonding Process Using Taguchi Methods)

  • 송춘삼;지현식;김주한;김종형;안효석
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.30-36
    • /
    • 2008
  • A flip-chip bonding system using IR laser with a wavelength of 1064 nm was developed and associated process parameters were analyzed using Taguchi methods. An infrared laser beam is designed to transmit through a silicon chip and used for transferring laser energy directly to micro-bumps. This process has several advantages: minimized heat affect zone, fast bonding and good reliability in the microchip bonding interface. Approximately 50 % of the irradiated energy can be directly used for bonding the solder bumps with a few seconds of bonding time. A flip-chip with 120 solder bumps was used for this experiment and the composition of the solder bump was Sn3.0Ag0.5Cu. The main processing parameters for IR laser flip-chip bonding were laser power, scanning speed, a spot size and UBM thickness. Taguchi methods were applied for optimizing these four main processing parameters. The optimized bump shape and its shear force were modeled and the experimental results were compared with them. The analysis results indicate that the bump shape and its shear force are dominantly influenced by laser power and scanning speed over a laser spot size. In addition, various effects of processing parameters for IR laser flip-chip bonding are presented and discussed.

Nd:YAG 레이저를 이용한 Flipchip 접합 (Flip-chip Bonding Using Nd:YAG Laser)

  • 송춘삼;지현식;김종형;김주현;김주한
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.120-125
    • /
    • 2008
  • A flip-chip bonding system using DPSS(Diode Pumped Solid State) Nd:YAG laser(wavelength : 1064nm) which shows a good quality in fine pitch bonding is developed. This laser bonder can transfer beam energy to the solder directly and melt it without any physical contact by scanning a bare chip. By using a laser source to heat up the solder balls directly, it can reduce heat loss and any defects such as bridge with adjacent solder, overheating problems, and chip breakage. Comparing to conventional flip-chip bonders, the bonding time can be shortened drastically. This laser precision micro bonder can be applied to flip-chip bonding with many advantage in comparison with conventional ones.

다양한 레이저 접합 공정 조건에 따른 Sn-57Bi-1Ag 솔더 접합부의 계면 및 기계적 특성 (Interfacial and Mechanical Properties of Sn-57Bi-1Ag Solder Joint with Various Conditions of a Laser Bonding Process)

  • 안병진;천경영;김자현;김정수;김민수;유세훈;박영배;고용호
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.65-70
    • /
    • 2021
  • 본 연구에서는 레이저 접합 공정을 이용하여 flame retardant-4 (FR-4) 인쇄회로기판 (printed circuit board, PCB)의 organic solderability preservative (OSP) 표면처리 된 Cu pad와 전자부품을 Sn-57Bi-1Ag 저온 솔더 페이스트로 접합을 한 후 접합부의 계면 특성과 기계적 특성에 대하여 보고 하였다. 레이저 접합 공정은 레이저 파워 및 시간 등을 다르게 진행하여 접합 공정 조건이 접합부의 계면 및 기계적 특성에 미치는 영향을 살펴보았다. 레이저 접합 공정의 산업적 적용을 위하여 산업적으로 많이 이용되고 있는 리플로우 접합 공정을 이용한 접합부의 특성과도 비교 하였다. 레이저 접합 공정 적용 결과 2, 3 s의 짧은 공정 시간에도 계면에 Cu6Sn5 금속간화합물 (intermetallic compound, IMC)를 생성하여 접합부를 안정적으로 형성함을 확인 하였다. 또한, 리플로우 공정과 비교해 보았을 때 레이저 접합 공정을 적용할 경우 접합부의 보이드 형성이 억제됨을 확인할 수 있었으며 접합부의 전단강도도 리플로우 공정 접합부보다 높은 기계적 강도를 나타냈다. 따라서, 레이저 접합 공정을 적용할 경우 짧은 접합 공정 시간에도 불구하고 안정적인 접합부 형성 및 높은 기계적 강도를 확보할 수 있는 것으로 기대된다.

Orthodontic bonding to acid- or laser-etched prebleached enamel

  • Ozdemir, Fulya;Cakan, Umut;Gonul, Nese;Cakan, Derya Germec
    • 대한치과교정학회지
    • /
    • 제43권3호
    • /
    • pp.141-146
    • /
    • 2013
  • Objective: Bonding forces of brackets to enamel surfaces may be affected by the procedures used for bleaching and enamel etching. The aim of this study was to investigate the bonding strength of orthodontic brackets to laser-etched surfaces of bleached teeth. Methods: In a nonbleached control group, acid etching (group A) or Er:YAG laser application (group B) was performed prior to bracket bonding (n = 13 in each group). Similar surface treatments were performed at 1 day (groups C and D; n = 13 in each subgroup) or at 3 weeks (groups E and F; n = 13 in each subgroup) after 38% hydrogen peroxide bleaching in another set of teeth. The specimens were debonded after thermocycling. Results: Laser etching of bleached teeth resulted in clinically unacceptable low bonding strength. In the case of acid-etched teeth, waiting for 3 weeks before attachment of brackets to the bleached surfaces resulted in similar, but not identical, bond strength values as those obtained with nonbleached surfaces. However, in the laser-etched groups, the bonding strength after 3 weeks was the same as that for the nonbleached group. Conclusions: When teeth bleached with 38% hydrogen peroxide are meant to be bonded immediately, acid etching is preferable.

폴리머 마이크로 칩에 대한 레이저 투과 마이크로 접합 (Analysis of Transmission Infrared Laser Bonding for Micro Polymer Devices)

  • 김주한;신기훈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.43-45
    • /
    • 2005
  • A precise bonding technique, transmission laser bonding using energy transfer, for polymer micro devices is presented. The irradiated IR laser beam passes through the transparent part and absorbed on the opaque part. The absorbed energy is converted to heat and bonding takes place. In order to optimize the bonding quality, the temperature profile on the interface must be obtained. Using optical measurements of the both plates, the absorbed energy can be calculated and heat transfer model was applied for obtaining the transient temperature profile. The transmission laser bonding has a potential in the local precise bonding in MEMS or Lab-on-a-chip.

  • PDF

레이저 유리 접합 공정의 유한요소해석 (Finite Element Analysis of Laser Class Bonding Process)

  • 홍석관;강정진;변철웅
    • 한국레이저가공학회지
    • /
    • 제11권3호
    • /
    • pp.10-15
    • /
    • 2008
  • This study is aimed to analyse the laser glass bonding process numerically. Due to the viscoelastic behaviour of glass, the extremely large deformation of the frit seal is resulted continuously over the transition temperature, so that the thermal boundary condition be changed in the entire calculation process. The commercial FEM algorithm is restrictively able to remesh the large geometrical boundary shape and to adapt the boundary conditions simultaneously. According to our manual adaptation of increasing the laser line intensity to 700 mW/mm, it is possible to estimate the thermal glass bonding process under the fracture stress in principle. But it should be studied further in the case of high laser line intensity.

  • PDF