• 제목/요약/키워드: Large cathode-small anode

검색결과 14건 처리시간 0.026초

Electrical characteristics of lateral poly0silicon field emission triode using LOCOS process

  • Lee, Jae-Hoon;Lee, Myoung-Bok;Park, Dong-Il;Ham, Sung-Ho;Lee, Jong-Hyun;Lee, Jung-Hee
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제3권1호
    • /
    • pp.38-42
    • /
    • 1999
  • Using the LOCOS process, we have fabricated the lateral type polysilicon field emission triodes with poly-Si/oxide/Si structure and investigated their current-voltage characteristics for three biasing modes of operation. The fabricated devices exhibit excellent electrical performances such as a relatively low turn-on anode voltage of 14 V at VGC = 0V, a stable and high emission current of 92${\mu}$A/triode over 90 hours, a small gate leakage current of 0.23 ${\mu}$A/triode and an outstanding transconductance of 57${\mu}$S/5triodes at VGC = 5V and VAC = 26V. these superior electrical operation is believed to be due to a large field enhancement effect, which is related to the sharp cathode tips produced by the LOCOS process as well as the high aspect ratio (height /radius ) of the cathode tip end.

  • PDF

3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향 (Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution)

  • 김시온;황중기;김성진
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

검출기 측정방법에 따른 PAE값의 변화 (Change of PAE according to Detector Measurement Method)

  • 임인철
    • 한국콘텐츠학회논문지
    • /
    • 제10권6호
    • /
    • pp.307-311
    • /
    • 2010
  • 본 연구는 검출기 측정방법에 따라 관전압 정확도 검사결과인 PAE값이 어떻게 달라지는지 알아보고자 한다. 실험방법으로는 측정거리와 X선관 각도, 방향에 따른 PAE값의 변화실험에서는 초점과 측정기간의 거리를 100cm, 80cm, 60cm에 위치시킨 상태에서 관전압지시치는 70kVp, X선관 각도는 음극, 양극측으로 $5^{\circ},\;10^{\circ},\;15^{\circ},\;20^{\circ},\;25^{\circ},\;30^{\circ}$로 맞추어 측정하고, 관전압지시치에 따른 PAE값의 변화실험에서는 관전압 60kVp, 70kVp, 80kVp, 90kVP, 100kVp를 설정하고 소초점과 대초점을 전환하며 측정하였다. 측정거리와 X선관 각도, 방향에 대한 PAE값의 결과를 보면 100cm일 경우에는 음극측에서 전체적으로 PAE값이 높게 나타났으며 80cm, 60cm일 경우에는 양극측에서 높게 나타났다. PAE값의 변동율은 100cm일 경우 음, 양극측 모두 안정적으로 나타났으며 80cm, 60cm일 경우에는 불균형적으로 나타났다. 관전압지시치에 따른 PAE값의 결과로는 대초점보다는 소초점이 높게 나타났으며, 지시치가 클수록 높게 나타났다. 오차 범위는 지시치가 클수록 적게 나타났다.

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Nanostructured Polymer Electrolytes for Li-Batteries and Fuel Cells

  • 박문정
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.71.2-71.2
    • /
    • 2012
  • There are rising demands for developing more efficient energy materials to stem the depletion of fossil fuels, which have prompted significant research efforts on proton exchange fuel cells (PEFCs) and lithium ion batteries (LIBs). To date, both PEFCs and LIBs are being widely developed to power small electronics, however, their utilization to medium-large sized electric power resources such as vehicle and stationary energy storage systems still appears distant. These technologies increasingly rely upon polymer electrolyte membranes (PEMs) that transport ions from the anode to the cathode to balance the flow of electrons in an external circuit, and therefore play a central role in determining the efficiency of the devices; as ion transport is a kinetic bottleneck compared to electrical conductivity, enormous efforts have been devoted to improving the transport properties of PEMs. In present study, we carried out an in-depth analysis of the morphology effects on transport properties of PEMs. How parameters such as self-assembled nanostructures, domain sizes, and domain orientations affect conductivities of PEMs will be presented.

  • PDF

주철의 냉간 아크용접시 용접부의 부식에 관한 전기화학적 평가 (An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding Process of the Cast Iron)

  • 김진경;문경만
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.273-275
    • /
    • 2005
  • Variation of hardness and corrosion potential of welding zone was investigated when cold arc welding of cast iron was carried out with a parameter of Ni electrode. Hardness of HAZ was the highest compared to other welding zone. And corrosion potential of HAZ was also more negative value than other welding zone. However there was not a proportional relation between hardness and corrosion potential. Local corrosion of HAZ was clearly appeared than other welding zone by small anode and large cathode in seal water solution.

  • PDF

뇌졸중 환자의 상지기능에 대한 경두개 직류자극술 효과 : 체계적 고찰 및 메타분석 (Effectiveness of Transcranial Direct Current Stimulation(tDCS) on Upper Extremity Function in Stroke Patients : A Systematic Review and Meta-Analysis)

  • 원경아;양민아;박혜연;박지혁
    • 재활치료과학
    • /
    • 제9권1호
    • /
    • pp.7-23
    • /
    • 2020
  • 목적 : 본 연구는 뇌졸중 환자의 상지기능 회복에 대한 경두개 직류자극(transcranial Direct Current Stimulation; tDCS)의 효과를 살펴본 연구를 분석하는 데 목적이 있다. 연구 방법 : 2009년부터 2018년 현재까지 국내외 학술지에 게재된 논문들을 NDSL과 RISS를 통해 검색하였다. 선정기준과 배제기준을 통해 총 14개의 실험연구 논문이 선정되었다. 이를 PEDro 척도를 사용하여 질적 평가를 시행하고, 이 중 12개 논문에 대해서 Comprehensive Meta Analysis 3.0 프로그램을 사용하여 메타분석을 실시하였다. 결과 : 본 연구에서 고찰한 문헌 14편은 모두 국외 학술지에 게재된 문헌들이었다. 메타분석을 실시한 결과 효과 크기는 상지 근력 0.19로 '작은 효과크기', 상지 움직임 0.49로 '보통 효과크기'를 보였다. 상지 움직임의 효과크기는 통계적으로 유의한 변화가 있던 것으로 분석되었다(p<0.05). 또한 양극(anode) 모드는 '큰 효과크기'를. 음극(cathode) 모드는 '보통 효과크기'를 보였으며, 양극 모드의 효과크기만 통계적으로 유의하였다(p<0.05). 결론 : 본 연구 결과를 통하여 상지기능이 제한된 뇌졸중 환자에게 tDCS는 유용한 재활 기법이 될 수 있다는 것을 확인하였다. 이는 국내 임상가들에게 뇌졸중 환자를 위한 새로운 재활 기법의 기초자료를 제시하고, 효과적인 중재를 계획하는 데 도움이 될 것이다.

마그네트론 스퍼터링 장치의 타겟구조 개선에 관한 연구 (A Study on the Improvement on the Target Structure in a Magnetron Sputtering Apparatus)

  • 배창환;이주희;한창석
    • 열처리공학회지
    • /
    • 제23권1호
    • /
    • pp.23-28
    • /
    • 2010
  • The cylindrical magnetron sputtering has not been widely used, although this system is useful for only certain types of applications such as fiber coatings. This paper presents electrode configurations which improved the complicacy of the target assembly by using the positive voltage power supply. It is a modified type which has a target constructed with a large cylindrical part, a conical part and a small cylindrical part. When positive voltage was applied to an anode, a stable glow discharge was established and a high deposition rate was obtained. The substrate bias current was monitored to estimate the effect of ion bombardment. As a result, it was found that the substrate current was large. With cylindrical and conical cathode magnetron sputter deposition on the surface of the substrate to prevent re-sputtering, ion impact because it can increase the effectiveness with excellent ductility and adhesion of Ti film deposition can be obtained. We board at the front end of the ground resistance of $5\;k{\Omega}$ attached to the substrate potential can be controlled easily, and Ti film deposition with excellent adhesion can be obtained. Microstructure and morphology of Ti films deposited on pure Cu wires were investigated by scanning electron microscopy in relation to preparation conditions. High level ion bombardment was found to be effective in obtaining a good adhesion for Cu wire coatings.

하수고도처리용 미세조류의 최적회수를 위한 전기응집기술 적용에 있어 전류의 영향 (Effects of electric current on electrocoagulation for optimal harvesting of microalgae for advanced wastewater treatment)

  • 이석민;주성진;최경진;장산;황선진
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.473-478
    • /
    • 2014
  • Microalgae is known as one alternative energy source of the fossil fuel with the small size of $5{\sim}50{\mu}m$ and negative charge. Currently, the cost of microalgae recovery process take a large part, about 20 - 30% of total operating cost. Thus, the microalgae recovery method with low cost is needed. In this study, the optimum current for Scenedesmus dimorphus recovery process using electrocoagulation techniques was investigated. Under the electrical current, Al metal in anode electrode is oxidized to oxidation state of $Al^{3+}$. In the cathode electrode, the water electrolysis generated $OH^-$ which combine with $Al^{3+}$ to produce $Al(OH)_3$. This hydroxide acts as a coagulant to harvest microalgae. Before applying in 1.5 L capacity electrocoagulation reactor, Scenedesmus dimorphus was cultured in 20 L cylindrical reactor to concentration of 1 OD. The microalgae recovery efficiency of electrocoagulation reactor was evaluated under different current conditions from 0.1 ~ 0.3 A. The results show that, the fastest and highest recovery efficiency were achieved at the current or 0.3 A, which the highest energy efficiency was achieved at 0.15 A.