• 제목/요약/키워드: Large Language Model (LLM)

검색결과 51건 처리시간 0.023초

언어-기반 제로-샷 물체 목표 탐색 이동 작업들을 위한 인공지능 기저 모델들의 활용 (Utilizing AI Foundation Models for Language-Driven Zero-Shot Object Navigation Tasks)

  • 최정현;백호준;박찬솔;김인철
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.293-310
    • /
    • 2024
  • In this paper, we propose an agent model for Language-Driven Zero-Shot Object Navigation (L-ZSON) tasks, which takes in a freeform language description of an unseen target object and navigates to find out the target object in an inexperienced environment. In general, an L-ZSON agent should able to visually ground the target object by understanding the freeform language description of it and recognizing the corresponding visual object in camera images. Moreover, the L-ZSON agent should be also able to build a rich spatial context map over the unknown environment and decide efficient exploration actions based on the map until the target object is present in the field of view. To address these challenging issues, we proposes AML (Agent Model for L-ZSON), a novel L-ZSON agent model to make effective use of AI foundation models such as Large Language Model (LLM) and Vision-Language model (VLM). In order to tackle the visual grounding issue of the target object description, our agent model employs GLEE, a VLM pretrained for locating and identifying arbitrary objects in images and videos in the open world scenario. To meet the exploration policy issue, the proposed agent model leverages the commonsense knowledge of LLM to make sequential navigational decisions. By conducting various quantitative and qualitative experiments with RoboTHOR, the 3D simulation platform and PASTURE, the L-ZSON benchmark dataset, we show the superior performance of the proposed agent model.

문서 데이터 정보화를 위한 지능형 문서처리 플랫폼에 관한 연구 (A Study on the Intelligent Document Processing Platform for Document Data Informatization)

  • 허희도;강동구;김영수; 전삼현
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.89-95
    • /
    • 2024
  • 요즘 기업의 경쟁력은 조직이 축적한 조직의 지식들을 모든 조직원들이 잘 공유하고 활용하는 능력에 달려있다. 이것을 증명이라도 하듯이 지금 세상은 LLM(거대언어모델)의 기반의 생성형 AI 기술을 이용한 쳇GPT서비스에 대해 집중하고 있다. 하지만, 쳇GPT 서비스를 업무에 적용하기에는 아직 환각성 문제가 많아 어려운 상태이다. 이 문제를 해결하기 위해 sLLM(경량거대언어모델) 기술이 대안으로 제시되고 있다. sLLM을 구성하기 위해서는 기업데이터가 필수적으로 필요하다. 기업데이터는 조직의 ERP Data와 조직이 보존하고 있는 기업의 오피스 문서 지식 데이터이다. ERP Data는 sLLM과 직접 연결하여 활용할 수 있으나 오피스 문서는 파일 형태로 저장되어 있어서 데이터 형태로 변환하여야 sLLM과 연결하여 활용할 수 있다. 뿐만 아니라 파일 형태로 저장되어져 있는 오피스 문서들을 조직을 지식 정보로 활용하기에는 기술적 제약 사항이 너무 많다. 본 연구는 오피스 문서를 파일 형태가 아닌 DB 형태로 저장하는 방법을 제시함으로서 기업이 기 축적 된 오피스 문서를 조직의 지식 시스템으로 잘 활용할 수 있게 하고, 기업의 sLLM에 오피스 문서를 데이터 형태로 제공하여 AI 기술과 접목하여 기업 경쟁력을 향상 시키는데 기여하고자 한다.

거대언어모델 기반 로봇 인공지능 기술 동향 (Technical Trends in Artificial Intelligence for Robotics Based on Large Language Models)

  • 이준기;박상준;김낙우;김에덴;고석갑
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.95-105
    • /
    • 2024
  • In natural language processing, large language models such as GPT-4 have recently been in the spotlight. The performance of natural language processing has advanced dramatically driven by an increase in the number of model parameters related to the number of acceptable input tokens and model size. Research on multimodal models that can simultaneously process natural language and image data is being actively conducted. Moreover, natural-language and image-based reasoning capabilities of large language models is being explored in robot artificial intelligence technology. We discuss research and related patent trends in robot task planning and code generation for robot control using large language models.

생성형 AI 의 교육용 컨텐츠 활용을 위한 연구 (Research on the use of educational content in generative AI)

  • 이승렬;오태훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.936-937
    • /
    • 2023
  • 본 논문에서는 LLM(Large Language Model) 모델의 fine-tuning 을 통한, 기초 수리 서술형 문항 풀이용 모델 및 Dall-E2 등 이미지 생성형 모델을 활용한 따른 영어 퀴즈풀이용 이미지 생성형 모델을 생성하여, 한국어 기반 LLM 자체 모델 학습 및 교육용 이미지 생성에 대한 방법을 고찰하였다.

거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로 (Analysis of Discriminatory Patterns in Performing Arts Recognized by Large Language Models (LLMs): Focused on ChatGPT)

  • 최지애
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.401-418
    • /
    • 2023
  • 최근 ChatGPT 등의 등장으로 거대언어모델(이하 LLM: Large Language Model)에 대한 사회경제적 관심이 고조되고 있다. 생성형AI의 일종인 거대언어모델은 대본 창착이 가능한 수준까지 이르고 있다. 이러한 측면에서 일반인과 전문가들이 광범위하게 활용할 거대언어모델에서 공연예술 전반 혹은 특정 공연예술물이나 단체의 차별 이슈(성차별, 인종차별, 종교차별, 연령차별 등)를 어떻게 묘사하는지에 관심을 가지고 해결해 나가야 할 것이다. 그러나 아직 거대언어모델에서 공연예술의 차별 이슈에 대한 본격적인 조사와 논의는 이루어지지 않고 있다. 따라서 본 연구의 목적은 거대언어모델로부터의 공연예술 분야 차별이슈 인식 양상을 텍스트 분석하고 이로부터 공연예술분야가 대응할 시사점과 거대언어모델 개발 시사점을 도출하는 것이다. 먼저 거대언어모델에게 차별에 대한 감수성을 측정하기 위해 9가지 차별 이슈에 대한 BBQ(Bias Benchmark for QA) 질문 및 측정법을 사용했으며, 대표적인 거대언어모델로부터 도출된 답변에 대해서 공연예술 전문가에 의해 거대언어모델이 잘못 인지한 부분이 있는지의 검증을 거친 후에 내용분석법을 통해 공연예술분야의 차별적 관점의 윤리성에 대한 거대언어모델의 인식을 분석하였다. 분석 결과로 공연예술 분야에게 주는 시사점과 거대언어모델 개발 시 주의할 점 등을 도출하고 토의하였다.

검색 증강 LLM을 이용한 치과 상담용 챗봇 개발 (Development of Dental Consultation Chatbot using Retrieval Augmented LLM)

  • 박종진
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.87-92
    • /
    • 2024
  • 본 논문에서는 치과 상담용 챗봇을 개발하기 위해 기존의 대규모 언어 모델(LLM)과 랭체인 라이브러리를 이용하여 검색 증강 생성(RAG) 시스템을 구현하였다. 이를 위해 국내 치과 대학병원의 웹페이지 게시판에 있는 내용을 수집하고 치과 전문의의 자문과 감수를 받아 상담 데이터를 구축하였다. 입력된 상담용 데이터를 적절한 크기로 분할하기 위해 청크 크기와 각 청크의 겹치는 텍스트의 크기는 각각 1001과 100으로 하였다. 시뮬레이션 결과 검색 증강 LLM은 사용자 입력과 가장 유사한 상담 내용을 검색하여 출력하였다. 구축된 챗봇을 통해 치과 상담의 접근성과 상담 내용의 정확성을 높일 수 있음이 확인되었다.

대형 언어 모델을 활용한 설비설계의 자동화 (Automation of M.E.P Design Using Large Language Models)

  • 박경규;이승빈;서민조;김시욱;최원준;김치경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.237-238
    • /
    • 2023
  • Urbanization and the increase in building scale have amplified the complexity of M.E.P design. Traditional design methods face limitations when considering intricate pathways and variables, leading to an emergent need for research in automated design. Initial algorithmic approaches encountered challenges in addressing complex architectural structures and the diversity of M.E.P types. However, with the launch of OpenAI's ChatGPT-3.5 beta version in 2022, new opportunities in the automated design sector were unlocked. ChatGPT, based on the Large Language Model (LLM), has the capability to deeply comprehend the logical structures and meanings within training data. This study analyzed the potential application and latent value of LLMs in M.E.P design. Ultimately, the implementation of LLM in M.E.P design will make genuine automated design feasible, which is anticipated to drive advancements across designs in the construction sector.

  • PDF

LLM 기반의 생성형 AI 응답 데이터 품질이 업무 활용 만족도에 미치는 영향에 관한 연구 (A Study of how LLM-based generative AI response data quality affects impact on job satisfaction)

  • 이승환;현지은;김광용
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.117-129
    • /
    • 2024
  • 2017년 새로운 형태의 아키텍처인 트랜스포머(Transformer)가 발표되면서 언어모델에도 많은 변화가 있었다. 특히 대형 언어 모델인 LLM(Large language model)의 발전으로 검색이나 챗봇(Chatbot)과 같은 생성형 AI 서비스가 다양한 업무 영역에 활용되고 있다. 하지만 개인정보 유출과 같은 보안 이슈나 거짓 정보를 생성하는 할루시네이션(Hallucination)과 같은 신뢰성 문제가 발생하면서 이러한 서비스의 실효성에 대한 우려의 목소리도 커지고 있다. 이에 본 연구에서는 이러한 우려에도 불구하고 생성형 AI를 업무 영역에 활용하고 있는 빈도가 점점 증가하고 있는 요인에 대해서 분석하고자 하였다. 이를 위해 LLM 기반의 생성형 AI 응답 데이터 품질에 영향을 미치는 8가지 요인을 도출하고 유효 표본 195개를 대상으로 이러한 요인들이 업무 활용 만족도에 미치는 영향을 실증 분석하였다. 분석결과 전문성, 접근성, 다양성, 편리성이 지속적 사용의도에 유의한 영향을, 보안성, 안정성, 신뢰성 등이 부분적으로 유의한 영향을, 완전성이 부정적 영향을 미치는 요인으로 나타났다. 본 연구에서는 응답 데이터 품질에 대한 수요자의 인식이 업무 활용 만족도에 어떠한 영향을 미치는지 학문적으로 규명하고, 이러한 서비스에 대한 수요자 중심의 의미 있는 실무적 시사점을 제시하는데 그 목적이 있다.

검색 증강 생성(RAG) 기술의 최신 연구 동향에 대한 조사 (A Survey on the Latest Research Trends in Retrieval-Augmented Generation)

  • 이은빈;배호
    • 정보처리학회 논문지
    • /
    • 제13권9호
    • /
    • pp.429-436
    • /
    • 2024
  • Large Language Model(LLM)의 급격한 발전은 자연어 처리 분야에 혁신을 불러 일으켜 이를 적절하게 활용하는 것이 중요한 주제로 떠오르고 있다. 방대한 데이터로 훈련된 LLM은 다양한 주제에 대한 텍스트 생성이 가능하여 콘텐츠 생성, 기계 번역, 챗봇 등 여러 방식으로 적용이 가능하나 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어렵다는 단점이 존재한다. 모델 훈련이 완료된 이후의 최신 정보로 즉각 업데이트되기도 어려우며, 모델이 실제로 존재하지 않는 정보나 오류에 대해 그럴 듯하게 답변하는 환각 현상(Hallucination) 역시 주요 문제점이다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval-Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상하기 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 RAG의 기본 아키텍처를 소개하고, LLM에 RAG를 적용하기 위한 연구 및 최적화의 최신 동향을 분석한다. RAG를 평가하기 위한 다양한 기법들을 소개하고, 실제 산업에서 RAG를 활용하기 위해 성능을 최적화하거나 응용한 사례들을 분석한다. 이를 바탕으로 향후 RAG 모델이 발전할 수 있는 연구 방향성을 제시하고자 한다.