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Text-based and multimodal generative foundational 
models—in this article termed “large language models” 
(LLMs)—have the capability to process textual data and 
images due to their multimodal capabilities [1,2]. There has 
been a remarkable surge in published studies that report 
on the accuracy of LLMs in medical applications, reflecting 
LLMs’ potential to significantly reshape healthcare [3-5]. 
These studies represent a new genre of medical research. 
However, the methodology and presentation of results in 
these studies are highly variable [6]. Inconsistent and 
incomplete reporting hampers the ability of the reviewers 
and readers to evaluate the methodology and results of the 
studies, as well as to assess the replicability of the findings. 
Consequently, there is a pressing need for guidelines to 
improve the quality of research reports that present the 
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accuracy of LLMs in healthcare applications [6,7]. The 
MInimum reporting items for CLear Evaluation of Accuracy 
Reports of Large Language Models in healthcare (MI-
CLEAR-LLM) checklist aims to provide a set of essential 
items, rather than an exhaustive list, for the transparent 
reporting of clinical studies that present the accuracy of 
LLMs in healthcare applications, thereby promoting clearer 
evaluation of the study findings.

Item 1. Identification and Specifications of 
the LLM Used

LLMs are subject to continuous updates, some of which 
may not be fully known to the users [3,8]. As a result, it 
is generally extremely difficult for third parties to directly 
replicate study results, particularly those obtained with 
commercial models, due to the evolving nature of these 
models [8]. Consequently, at the very least, transparent and 
detailed reporting of the LLM’s name, version, manufacturer, 
and the exact date of querying attempts is critical. It is 
helpful to note the date through which the LLM was trained 
and whether it has access to web-based information, known 
as retrieval-augmented generation, or RAG [9].

Item 2. How Stochasticity Was Handled

Unlike conventional artificial intelligence models that 
produce consistent outputs for given inputs through 
deterministic operations, LLMs can generate different 
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responses even when prompted repeatedly with the exact 
same input. This phenomenon, known as ‘stochasticity,’ arises 
from the randomness in the operation of LLMs, particularly 
in proprietary models [1,8]. For example, when given the 
task to complete the sentence “The dog is on the…,” the 
LLM generates probabilities for various words such as “floor,” 
“table,” “roof,” etc. The final word selection is then made 
by applying a random factor to these probabilities rather 
than simply choosing the word with the highest probability. 
Therefore, although probability plays a significant role, a 
word with a lower probability might be chosen, and the 
choice may vary at each time. The degree of randomness in 
the model’s operation can be adjusted. In particular, setting 
a hyperparameter called the ‘temperature’ close to zero makes 
the model almost deterministic, meaning it selects the next 
word almost entirely according to probability, substantially 
reducing the effect of stochasticity [1].

Therefore, researchers should clearly describe how 
stochasticity was managed when reporting study results. 
This includes specifying the number of querying attempts 
made and, in cases of repeated querying, explaining how 
the multiple results generated by these attempts were 
synthesized for analysis (e.g., using at least one correct 
answer out of a certain number of querying attempts, 
averaging the results, majority vote, etc.) and providing 
the rationale for these choices. Without such clarification, 
the risk of cherry-picking favorable results after multiple 
querying attempts cannot be entirely dismissed. 
Furthermore, if repeated querying was used, the study report 
should include an analysis of the reliability of the LLM 
outputs across these attempts. Additionally, it is important 
to specify the settings of technical parameters, such as the 
temperature, that modify the level of randomness. Compared 
to proprietary LLMs, most open-weight models provide more 
options to adjust stochastic versus deterministic behavior, 
and the details of any pertinent adjustments, if employed, 
should be clearly reported [10].

Item 3. Full Text of Prompts With Exact 
Wording and Syntax Used

Even slight modifications in prompts—such as the change 
of a single word or word order—can lead to significantly 
different results from LLMs, a phenomenon known as ‘prompt 
brittleness’ [8,11,12]. For instance, while the phrases 
“Calculate the LI-RADS category” and “Determine the LI-
RADS category” may seem semantically identical, altering 

just one word can drastically change the model’s output [12]. 
Given the sensitivity of LLM outputs to prompt variations, 
complete transparency in reporting the exact wording and 
syntax of prompts is essential. Providing the exact full text 
of the prompts used in a study is crucial for replicability and 
for a clear understanding of the results. This includes precise 
spellings, symbols, punctuation, spaces, and any other 
relevant details.

Item 4. A Detailed Explanation of How the 
Prompts Were Specifically Employed

Not only does the specific wording of prompts affect the 
LLM output, but also how these prompts are employed also 
plays a critical role. When testing an LLM with multiple 
queries, it is crucial to provide a detailed explanation of how 
the prompts were structured and utilized. Specifically, it 
should be clarified whether each query and its corresponding 
prompts were treated as individual chat sessions or if 
multiple queries were processed together within a single 
chat session. In the latter scenario, it is important to 
specify whether the multiple queries were input all at once 
or sequentially across multiple chat rounds, with new queries 
being treated as continuations of previous interactions or 
other prior queries within the session. These distinctions are 
significant because LLM responses are influenced by prior 
interactions within the same chat session, which may impact 
the model’s output.

Item 5. Whether Prompt Testing and 
Optimization Were Used and, If so, Their 
Details

Given the sensitivity of LLM outputs to prompt variations, 
researchers often employ various strategies to optimize 
prompts in order to achieve the desired LLM performance—
a process commonly referred to as ‘prompt engineering’ [12-
14]. A detailed elaboration of the optimization process, if 
used, should include the steps taken to create the prompts, 
the rationale behind selecting specific wording over 
alternatives (e.g., by referencing clinical practice guidelines, 
standardized terminology, or through consultation with 
subject matter experts), and whether any prompt testing 
was conducted. If data were used during the prompt testing 
and optimization process, it is essential to clarify whether 
the data were entirely independent from the data used 
to evaluate LLM performance, to ensure a fair assessment 
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without data leakage. 

Item 6. Whether the Test Dataset Was 
Independent

Transparency is essential regarding the independence 
of the dataset used to evaluate the performance of LLMs. 
This includes clarifying whether any portion of the test 
data was used or referenced during prompt optimization, 
as mentioned above, and whether the test data might have 
been included in the model’s training process. Since LLMs 
are often developed using extensive scraping of internet 
content, there is a risk that test data may have inadvertently 
been part of the training dataset, potentially leading to 
data leakage [8,14]. If the test data were sourced from the 
internet, such as publicly available sets of test questions, 
the exact URLs where they can be found must be clearly 
identified.

CONCLUSION

Paying close attention to these items list in Table 1 will 
facilitate an adequate evaluation of clinical studies on LLM 
performance in healthcare applications. As these are key 
minimum items for transparent reporting, researchers should 
also make an effort to refer to any other relevant reporting 
guidelines when applicable for additional requirements 
[6,7,15]. Ensuring clarity and thoroughness in reporting 
will promote clearer evaluation of studies involving LLMs 
and help advance research replicability. Going forward, the 
Korean Journal of Radiology will ask authors and/or reviewers 
to use this checklist when assessing LLM papers.
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Table 1. Minimum items for the transparent reporting of clinical studies that present the performance of LLMs

Item 
number

Checklist item Details Yes/No/NA

1 Identification and specifications 
of the LLM used

• Name
• Version
• Manufacturer
• Cutoff date for the data used to train the LLM
• Whether the LLM has access to web-based information, known as RAG
• Date of querying attempts

2 How stochasticity was handled • Number of querying attempts made
• ‌�How the multiple results generated by multiple attempts were synthesized for 

analysis, and the rationale behind it
• Analysis of the reliability of the LLM outputs across multiple attempts
• ‌�Settings of technical parameters, such as the temperature, that modify the 

level of randomness

3 Full text of prompts with exact 
wording and syntax used

• Precise spellings, symbols, punctuation, spaces, and any other relevant details

4 Detailed explanation of how 
the prompts were specifically 
employed

• ‌�Whether each query and its corresponding prompts were treated as individual 
chat sessions or if multiple queries were processed together in a single session

• ‌�Whether the multiple queries were input all at once or sequentially across 
multiple chat rounds

5 Whether prompt testing and 
optimization were used and, 
if so, their details

• Steps taken to create the prompts
• Rationale behind selecting specific wording over alternatives

6 Whether the test dataset was 
independent

• ‌�Whether any portion of the test data was used in the model training or prompt 
testing and optimization

• If sourced from the internet, the exact URLs where they can be found

LLM = large language model, NA = not applicable, RAG = retrieval-augmented generation
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