• Title/Summary/Keyword: Laplace transformation

Search Result 87, Processing Time 0.028 seconds

ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X8

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.517-521
    • /
    • 2009
  • The object of this note is to derive Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$ by using a different method from that of Padmanabham's. An interesting special case is also pointed out.

Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 해석적인 해)

  • Yoo, H.;Pak, E.-T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

Enhanced First-Order Shear Deformation Theory for Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures (복합재료 적층 구조물에 대한 열-기계-점탄성 연성 거동 예측을 위한 개선된 일차전단변형이론)

  • Kim, Jun-Sik;Han, Jang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an enhanced first-order shear deformation theory is proposed to efficiently and accurately predict the thermo-mechanical-viscoelastic coupled behavior of laminated composite structures. To this end, transverse shearstress and displacement fields are independently assumed, and the strain-energy relationship between these fields issystematically established using the mixed variational theorem (MVT). In MVT, the transverse shear stress fields are obtained from the third-order zigzag model, whereas the displacement fields of the conventional first-order model are considered to amplify the benefits of numerical efficiency. Additionally, a transverse displacement field with a smooth parabolic distribution is introduced to accurately predict the thermal behavior of composite structures. Furthermore, the concept of Laplace transformation is newly employed to simplify the viscoelastic problem, similar to the linear-elastic problem. To demonstrate the performance of the proposed theory, the numerical results obtained herein were compared with those available in the literature.

Runoff Estimation for Small Watershed by Interactive Program (Interactive program에 의한 소유역의 유출량 산정)

  • 안상진;김종섭
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.97-107
    • /
    • 1992
  • The purpose of this study is to estimate the flood hydrograph and runoff at ungaged small watershed by using interactive program with geomorphologic and climatic data obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahler. The present model is modified from Allam's interactive program which derives the geomorphologic instantaneous unit hydrograph(GIUH). This program uses the results of Laplace transformation and convolution integral of probability density function in travel time at each station, This program is used to estimate the time to peak, the flood discharge and the direct runoff at San seong station in Bocheong Stream.

  • PDF

Comparison of Common Methods from Intertwined Application in Image Processing

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.405-410
    • /
    • 2010
  • Image processing operations like smoothing and edge detection, and many more are very widely used in areas like Computer Vision. We classify the image processing domain as seven branches-image acquirement and output, image coding and compression, image enhancement and restoration, image transformation, image segmentation, image description, and image recognition and description. We implemented algorithms of gaussian smoothing, laplace sharpening, image contrast effect, image black and white effect, image fog effect, image bright and dark effect, image median filter, and canny edge detection. Such experimental results show the figures respectively.

Thermomechanical interactions in a transversely isotropic thermoelastic media with diffusion due to inclined load

  • Parveen Lata;Heena
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.263-272
    • /
    • 2024
  • This research deals with the study of two-dimensional deformation in transversely isotropic thermoelastic diffusion medium. This investigation integrates the effect of diffusion and thermal effects in transversely isotropic thermoelastic solids under inclined load. Inclined load is taken as linear combination of normal load and tangential load. Laplace and Fourier transformation techniques are employed to transform the physical domain and then transformed solutions are inverted with the aid of numerical inversion techniques. Concentrated and distributed load are considered to exemplify its utility. Graphical representation of variation in displacement, stresses, temperature and concentration distribution with distance is depicted by taking inclination at different angles. Some particular cases are studied.

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

Hybrid Element Model for Wave Transformation Analysis (파랑 변형 해석을 위한 복합 요소 모형)

  • 정태화;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.159-166
    • /
    • 2003
  • In this study, we develop a finite element model to directly solve the Laplace equation while keeping the same computational efficiency as the models based on the extended mild-slope equation which has been widely used for calculation of wave transformation in shallow water. For this, the computational domain is discretized into finite elements with a single layer in the vertical direction. The velocity potential in the element is then expressed in terms of the potentials at the nodes located at water surface, and the Galerkin method is used to construct the numerical model. A common shape function is adopted in horizontal direction, and the cosine hyperbolic function in vertical direction, which describes the vertical behavior of progressive waves. The model was developed for vertical two-dimensional problems. In order to verify the developed model, it is applied to vertical two-dimensional problems of wave reflection and transmission. It is shown that the present finite element model is comparable to the models based on extended mild-slope equations in both computational efficiency and accuracy.

ANALYSIS OF SOLUTIONS OF TIME FRACTIONAL TELEGRAPH EQUATION

  • Joice Nirmala, R.;Balachandran, K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.209-224
    • /
    • 2014
  • In this paper, the solution of time fractional telegraph equation is obtained by using Adomain decomposition method and compared with various other method to determine the efficiency of Adomain decomposition method. These methods are used to obtain the series solutions. Finally, results are analysed by plotting the solutions for various fractional orders.

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.