• Title/Summary/Keyword: Lamination Theory

Search Result 88, Processing Time 0.022 seconds

Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory (비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답)

  • Yoon, Seok Ho;Han, Seong Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.333-340
    • /
    • 1997
  • This paper will expand the third-order shear deformation theory by the double-Fourier series and reduce to the solution of a system of ordinary differential equations in time, which are integrated numerically using Newmark's direct integration method and clarify the undamped dynamic responses for the cross-ply and antisymmetric angle-ply laminated composite plates and shells with simply supported boundary condition. Numerical results for deflections are presented showing the effect of side-to-thickness ratio, aspect ratio, material anisotropy, and lamination scheme.

  • PDF

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

A Study on the Failure Characteristics of Equivalent Anisotropic Composite Plates (등가 이방성 복합재 평판에 대한 파손 특성에 관한 연구)

  • Yun, Jaeho;Kim, Hanjun;Kim, Yongha
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.35-42
    • /
    • 2022
  • This paper deals with predicting comparable mechanical properties of laminated composite plates. The stiffness of an equivalent anisotropic composite plate is derived based on classical lamination theory. A novel failure criterion is defined to describe the failure behaviour of laminated composite plates based on micro-mechanics failure criteria. Finally, the theory's validation of finite element analysis results was verified. We concluded that this theory is very suitable for failure analysis of laminated composite plates for aerospace applications due to their relative simplicity and computational efficiency.

Vibration of bio-inspired laminated composite beams under varying axial loads

  • Tharwat Osman;Salwa A. Mohamed;Mohamed A. Eltaher;Mashhour A. Alazwari;Nazira Mohamed
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.25-43
    • /
    • 2024
  • In this article, a mathematical model is developed to predict the dynamic behavior of bio-inspired composite beam with helicoidal orientation scheme under variable axial load using a unified higher order shear deformation beam theory. The geometrical kinematic relations of displacements are portrayed with higher parabolic shear deformation beam theory. Constitutive equation of composite beam is proposed based on plane stress problem. The variable axial load is distributed through the axial direction by constant, linear, and parabolic functions. The equations of motion and associated boundary conditions are derived in detail by Hamilton's principle. Using the differential quadrature method (DQM), the governing equations, which are integro-differential equations are discretized in spatial direction, then they are transformed into linear eigenvalue problems. The proposed model is verified with previous works available in literatures. Parametric analyses are developed to present the influence of axial load type, orthotropic ratio, slenderness ratio, lamination scheme, and boundary conditions on the natural frequencies of composite beam structures. The present enhanced model can be used especially in designing spacecrafts, naval, automotive, helicopter, the wind turbine, musical instruments, and civil structures subjected to the variable axial loads.

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

General Purpose Cross-section Analysis Program for Composite Rotor Blades

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Do-Hyung;Yun, Chul-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with arbitrary cross-section profiles and material distributions. The modulus weighted approach is used to take into account the non-homogeneous material characteristics of advanced blades. The CLPT (Classical Lamination Plate Theory) is applied to obtain the effective moduli of the composite laminate. The location of shear center for any given cross-sections are determined according to the Trefftz' definition while the torsion constants are obtained using the St. Venant torsion theory. A series of benchmark examples for beams with various cross-sections are illustrated to show the accuracy of the developed cross-section analysis program. The cross section cases include thin-walled C-channel, I-beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a reasonable correlation is obtained in comparison with experiments or finite element analysis results.

Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials (방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성)

  • 김성준
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.39-44
    • /
    • 2003
  • Embedding viscoelastic-damping materials into composites can greatly increase the damping properties of composite structures. Usually viscoelastic-damping materials behave isotropically so that their damping properties are the same in all directions. In these days, there is a desire to develop viscoelastic-damping materials that behave orthotropically so that damping properties vary with material orientation. These orthotropic damping materials can be made by embedding rows of thin wires within the viscoelastic materials. These wires add significant directional stiffness to the damping materials. where the stiffness variation with wire orientation follows classical lamination theory. In this paper, the loss factor of composite laminate was evaluated based on Ni and Adams' theory. To investigate the effect of directional damping material, the low-velociy impact response analysis was also performed. The present analysis results show that directional damping material has a great influence on vibration and damping characteristic of composite laminate.

Optimization of stacking sequence for composite golf club shafts (복합재료 골프샤프트의 적층최적화)

  • Kim, Moo-Sun;Han, Dong-Chul;Kim, Seon-Jin;Lee, Woo-Il
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study presents a methodology for optimization of static characteristics of golf club shafts. Stacking sequence for the optimal composite shaft performance is searched. A new objective function is defined for the simultaneous optimization of flexural and torsional stiffnesses. Classical lamination theory is used for the static analysis. As the optimization tool, genetic algorithm is applied with the stacking sequence as design. variables. With the optimal stacking sequence, dynamic characteristics of the shaft is also studied.

Analysis of the thermal instability of laminated composite plates

  • H. Mataich;A. El Amrani;B. El Amrani
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.95-113
    • /
    • 2024
  • In this paper, we will analyse the thermo-elastic behavior of the plate element of a structure arranged in a climatically aggressive environment (extreme temperature), we use a refined four-variable thick plate theory to take the shear effect into consideration, the proposed theory less computationally expensive and more accurate so that it incorporates the shear effect into the formulation. The plate is assumed to be simply supported on its four edges, so exact (closed-form) solutions are found according to the Navier expansion, and the governing stability equations and associated boundary conditions of the problem are obtained via the virtual works principle. The plate studied ismade of laminated composite materials, so a parametric study is needed to see the effect of different types of parameters and coupling on the critical temperature value causing thermo-elastic instability of the plate and also on the natural frequency of free vibration, as well as for other parameters such as anisotropy, slenderness and aspect ratio of the plate and finally the lamination angle. Numerical results are obtained for specially orthotropic and antisymmetrical plates and are compared with those obtained by othertheoriesin the literature to validate the analysis approach used.