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Abstract 

A two-dimensional cross-section analysis program based on the finite element 
method has been developed for composite blades with arbitrary cross-section profiles 
and material distributions. The modulus weighted approach is used to take into account 
the non-homogeneous material characteristics of advanced blades. The CLPT 
(Classical Lamination Plate Theory) is applied to obtain the effective moduli of the 
composite laminate. The location of shear center for any given cross-sections are 
determined according to the Trefftz' definition while the torsion constants are obtained 
using the St. Venant torsion theory. A series of benchmark examples for beams with 
various cross-sections are illustrated to show the accuracy of the developed cross-
section analysis program. The cross section cases include thin-walled C-channel, I-
beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a 
reasonable correlation is obtained in comparison with experiments or finite element 
analysis results. 
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Introduction 

Helicopter rotor blades are normally built-up of solid and/or thin-walled cross-
section, and it consists of complex geometries and various topologies such as erosion shield, 
skin, spar and balancing weight. They are often modeled as one-dimensional beams instead 
of the three-dimensional beams in static and dynamic analysis. For this case, Cross- 
sectional properties such as tension center, shear center and section stiffness of the blades 
are absolutely necessary for the analysis. However, it is not easy to calculate the cross- 
sectional properties of the blades. 

There are several cross-section analysis programs that can be applicable for beams 
and blades with arbitrary section geometries. The ShapeDesigner [1] can calculate the 
cross- sectional properties such as torsion constant, warping constant, warping and shear 
stresses. It is a useful tool for the analysis of steel, aluminum, and composite beams. The 
Precomp [2] provides span-variant cross-sectional properties for composite blades such as 
coupled stiffness, inertia properties, and offsets with respect to the blade pitch axis. It 
requires that the blade external shape and the internal layup of composite laminates be 
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described for inputs. The external shape is specified in terms of the chord, twist, and airfoil 
geometry variation along the blade. The internal layup is specified in terms of the laminates 
schedule, orientation of fibers in each laminate, and the laminate properties. A modified 
classic laminate theory with a shear-flow approach is used to obtain the more accurate 
cross-sectional properties. The NuMAD [3] is a windows based pre/post-processor to 
produce the three-dimensional FE model of ANSYS. It is designed to enable users to quickly 
and easily create a three-dimensional model of a turbine blade in static and dynamic analysis. 
Also, it can generate the one- dimensional properties from the three-dimensional finite 
element model of ANSYS.  

In this work, a finite element-based, two-dimensional cross-section analysis 
program is developed for composite blades with inhomogeneous cross-section shapes. The 
modulus weighted method is applied to consider the non-uniform distribution of material 
properties in the cross sections. In order for versatility of the cross-sectional program, MD 
Nastran [4] input file format is used as the pre-processor while the TECPLOT360 [5] file 
format is used as the post-processor. A series of validation is performed for beams and 
blades with various cross-section geometries as compared with commercial software, 
experimental data, and published data available in the literature. 

Theory 

In the cross-section analysis, centroidal properties such as center of gravity, tension 
center and shear center location should be determined and measured from the origin of the 
user-defined coordinate system. Fig. 1 shows the reference axis of the blade. It is assumed 
that X axis is located at an arbitrary position on the cross-section and Y and Z axes are 
perpendicular to this axis.  

 

Fig. 1. Reference axis of the blade 

 

Fig. 2. The coordinate systems of a blade cross-section 
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Fig. 2 shows the tension center (T.C.) offset ( zy, ) and shear modulus weighted 
centroid (S.M.W.C.) measured respect to the reference axis, and shear center (S.C.) offset 
( SCSC zy , ) from the shear modulus weighted centroidal position. 

For isotropic material case, the tension center offset ( zy, ) is simply defined as: 
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where, A  is the area of the cross-section, YQ  and ZQ  are the first moments of area 
measured from the reference axes, respectively. In the isotropic material case, tension 
center is coincided with the geometric centroid of the blade cross-section. The axial ( EA ) 
and bending stiffnesses ( ZY EIEI , ) of beams with isotropic materials are defined as 
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where E  is the Young’s modulus, YI  and ZI  are the area moment of inertia of the cross-
section, respectively. The torsion stiffness GJ  can be expressed as a function of the shear 
modulus G and the torsion constant J . The torsion constant is derived from the St. Venant 
torsion theory [6]. 
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where, ω  is the warping function of the cross-section and the torsion constant J  can be 
determined from the warping function. 

For beams with inhomogeneous cross-sections, each of the constituent sections with 
different properties can be expressed with respect to those of the reference sections having 

0E  and  0G . Hense, a given segment of the cross-sections are defined as 
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where 0E  and 0G  are Young’s and shear modulus of the reference section, iE  and iG  are 

Young’s and shear modulus of an i-th element.  
Using Eq. (4), the previously defined section properties are modified by modulus 

weighted properties as is given below: 
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where YQ  and ZQ  are Young’s modulus weighted first moment of area, y  and z  are 
Young’s modulus weighted centroid, YQ̂  and ZQ̂  are shear modulus weighted first moment 
of area, and ŷ  and ẑ  are shear modulus weighted centroid, respectively. In Eq. (5b), YI  
and ZI  are Young’s modulus weighted area moment of inertia, and YÎ  and ZÎ  are shear 
modulus area moment of inertia, respectively. These values are measured from the 
reference axis. Modulus weighted second moments of area respect to the tension center can 
be obtained by the parallel axis theorem, and is written by 
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where, YI  and ZI  are the Young’s modulus weighted area moment of inertia, and YÎ  and 

ZÎ  are shear modulus weighted area moment of inertia, respectively. These values are 
measured from Young’s and shear modulus weighted centroid. 

The section stiffness constants of the blade with inhomogeneous materials are now 
obtained by applying Eqs. (5) to (6), which are expressed as: 
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The shear center is defined as a point on the cross-section where a shear force 
induces no twist deformation. If a cantilever beam of length L  is subjected to a twisting 
moment at the tip, the elastic strain energy due to pure torsion is 
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where, xyt  and xzt  are torsional shear stresses. The strain energy due to transverse loads 

yV  and zV  is given by 
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where, xyτ  and xzτ  are the flexural shear stresses. The total strain energy due to a 
combined loading of torque and transverse loads should be: 
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When the transverse loads are applied at the shear center, the bending and torsion problems 
are decoupled. This leads to a definition of torsion-free flexure which is called as a Trefftz 
condition [6]: 

( ) 0=+∫∫ dAttA xzxzxyxy ττ          (11) 

The shear stresses due to pure torque are given by [6]: 
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From Eqs. (11) to (12), the Trefftz condition can then be written as: 
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Assuming that yV  or zV  is applied at the shear center, the above equation results in: 
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The above derivation can readily be extended to inhomogeneous material cases by using the 
modulus-weighted approach. The location of shear center are derived as 
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where the sectorial products of area and they are defined as:  

AdzyI

AdzI

AdyI

AZY

AZ

AY

ˆˆˆˆ

ˆˆˆ

ˆˆˆ

ˆˆ

ˆ

ˆ

∫∫
∫∫
∫∫

=

=

=

ω

ω

ω

ω

                                                                   (16) 

In order for the cross-section analysis, the finite element methods are employed in this 
study. As is shown in Fig. 3, a three node triangular element is introduced due to its convenience 
of modeling complex geometries such as helicopter blades and wind turbine blades. 

The cross section coordinates are transformed into y and z coordinates using the 
shape function N. 
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where the shape functions are defined in natural coordinates as given below: 
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In general, the numerical integration method is used to deal with a function f(y,z) for cross section. 
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Fig. 3. Order of Gauss integration and location of integration points for 3-node 

triangular element 
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where iJ denotes the determinant of Jacobian matrix J.  

The governing equations of torsion warpings are obtained through the principle of 
virtual work using the St. Venant principle. The variational statement results in the following 
form for the warpings [6]:  

0=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂−

∂
∂−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂+

∂
∂

∂
∂

∫∫ dAy
z

z
yzzyyA

δωδωωδωωδω                             (20) 

where ω  is the the warping function in the cross section. The discretized form for the 
warping variables are denoted as in Eq. (21) by use of Eq. (17). 

ee ωNωNωω δδ ==   ,                                                (21) 

where eω is the warping vector of an element. 

Substituting of Eq. (21) into Eq. (20) gives the warping equation. 
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where the element stiffness matrix Ke and loading vector Fe for an element are defined 
respectively as: 
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Discussions 

A series of benchmark tests are performed to validate the developed cross-sectional 
analysis program which is called KSec2D. The first example considered is a C-channel 
section. The geometry and coordinate axes of a C-channel section are given in Fig. 4. Table 
1 shows the comparison between KSec2D and analytical results for the geometric properties 
such as area, centroid, area moment of inertia, torsion constant and shear center location. 
The cross-section results are obtained using a total of 636 3-node triangular elements. As 
is seen Table 1, the current cross-section analysis results in an excellent agreement with 
those of closed form solution. 

The geometry FE mesh and warping distribution of the I-beam section are shown in Fig. 5. 
KSec2D results were obtained using 342 3-node linear elements. The FE meshes are generated 
with CTRIA3 element of MD Patran [8] and plotted the warping distributions using TECPLOT 360.  

             
Fig. 4. The geometric properties of          Fig. 5. FE mesh and warping distributions 

a C-channel beam                                of I beam 
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Table 1. Comparison results of a channel section beam 

Properties 
Analytical 

Solution [7] 
KSec2D % error 

Area (m
2
) 0.4 0.4 0.0 

y-dir 2.9938E-01 2.9938E-01 0.0 
Centroid (m) 

z-dir 1.0500E+00 1.0500E+00 0.0 

y-dir 2.6733E-01 2.6733E-01 0.0 Area moment 

of inertia (m
4
) z-dir 4.1958E-02 4.1958E-02 0.0 

Torsion Constant (m
4
) 1.4933E-03 1.5001E-03 0.46 

y-dir -6.2438E-01 -6.2010E-01 0.69 
Shear center (m) 

z-dir 1.0500E+00 1.0500E+00 0.0 

Table 2. Cross section properties for I beam 

Properties KSec2D MD Patran % error 

Area (m
2
) 15.0 15.0 0.0 

y-dir 2.50 2.50 0.0 
Centroid (m) 

z-dir 3.50 3.50 0.0 

y-dir 101.25 101.25 0.0 Area moment 

of inertia (m
4
) z-dir 21.25 21.25 0.0 

Torsion constant (m
4
) 5.5451 5.3333 3.97 

y-dir 2.4988 2.5000 -0.05 
Shear center (m) 

z-dir 3.4992 3.5000 -0.02 

Table 2 shows comparison of the cross section properties obtained using KSec2D and MD 
Patran. It is observed that the predictions of the KSec2D are in good agreement with MD Patran. 

The next example considered is a single-cell box section, as is shown in Fig. 6. The 
KSec2D results are obtained using 1,022 3-node triangular elements. The comparison of KSec2D 
results with those of MD Patran is presented in Table 3. The maximum error between the two set 
of results is about 8.9% for the torsion constant. Overall a good correlation is clearly seen. 

Numerical simulations are also carried out for elastically-coupled composite blades 
with two-cell airfoil section [9]. The beam has D-type spar having [0/15]2 layups, whereas 
the skin consists of [15/-15]. Fig. 7 shows the finite element model for the two-celled 
beam. The geometry and the material properties of the blade are given in Table 4. 

For KSec2D results, a total of 2,185 3-node triangular elements are used to discretize the 
section. Inertial properties, stiffness constants and centroidal offset properties are compared with other 
experimental results [9]. A good correlation is obtained in comparison with the experimental results. 

The last example considered is the KARI small-scaled blade. The FE mesh of KARI small-
scaled blade is presented in Fig. 8. The results of KARI are calculated using the CORDAS software 
which was developed by Russia-Korea technology transfer program for composite rotor blade cross-
section analysis. The CORDAS program is developed and operated in the windows 98 platform. MD 
Patran [8] is used to model the KARI small-scaled blade for Ksec2D input file. 

   
Fig. 6. FE mesh and warping distributions of         Fig. 7. FE meshes used for two-cell  

single cell box beam                                           airfoil section 
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(a) KARI small-scaled blade with variable cross-section 

 
(b) FE meshes of cross-section at S2 location 

Fig. 8. FE meshes of KARI small-scaled blade 

Table 3. Cross section properties for box beam 

Properties KSec2D 
MD 

Patran 
% error 

Area (m
2
) 1.4 1.4 0.0 

y-dir 1.0 1.0 0.0 
Centroid (m) 

z-dir 0.0 0.0 0.0 

y-dir 0.13787 0.13787 0.0 Area moment 

of inertia (m
4
) z-dir 0.46187 0.46187 0.0 

Torsion constant (m
4
) 0.3503 0.3191 8.91 

y-dir 0.9999 1.0000 -0.01 
Shear center (m) 

z-dir 0.0001 0.0000 0.01 

Table 4. Geometry and material properties of composite blades 

Properties Values 

E1 

E2 

G12 

ν12 

Ply thickness 

Airfoil 

Length 

Chord 

Airfoil thickness 

131 GPa 

9.3 GPa 

5.86 GPa 

0.40 

0.127 mm 

NACA 0012 

641.4 mm 

76.2 mm 

9.144 mm 

Table 5. Cross-section properties of two-cell airfoil section 

O15=θ  KSec2D Experiment [9] % error

EA (N) 7.3840E+06 - - 

EIY (N-m
2
) 7.9408E+01 7.7141E+01 2.94 

EIZ (N-m
2
) 3.2085E+03 - - 

Section 

Stiffness 

GJ (N-m
2
) 2.5662E+01 2.5427E+01 0.93 

y-dir 2.7661E-02 - - Tension 

center (m) z-dir 0.0000E+00 - - 

y-dir 1.6825E-02 - - 
Offset 

Shear 

center (m) z-dir 0.0000E+00 - - 

C.G .
T.C.S .C.
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Table 6. Cross-sectional properties of KARI small-scaled blade 

Properties 
CORDAS 

(KARI) 
KSec2D % error 

y-dir 0.2023 0.2179 0.0199C 
Tension center offset (m) 

z-dir 0.0013 0.0022 0.0011C 

y-dir 0.1927 0.2250 0.0411C 
Shear center offset (m) 

z-dir 0.0024 0.0021 0.0004C 

EA (N) 5.07E+06 5.29E+06 4.34 

EIY (N-m2) 5.45E+01 5.70E+01 4.59 

EIZ (N-m2) 2.22E+03 2.33E+03 4.95 
Section stiffness 

GJ (N-m2) 6.74E+01 8.42E+01 24.93

Table 6 shows the comparison of the cross-sectional properties between KSec2D and 
CORDAS for the locations of tension center, shear center and cross-section stiffnesses. The 
KSec2D results are obtained using 2,061 3-node triangular elements. Generally, a good 
correlation is obtained between the two codes, except the torsion rigidity. 

Conclusion 

In this work, a general purpose, finite element-based, two-dimensional cross-sectional 
analysis program (code name: KSec2D) was developed. In order for versatility of the program, 
the KSec2D uses MD Nastran input file format as pre-processor and TECPLOT360 input file 
format as post-processor. The modulus-weighted method was used to consider 
inhomogeneous cross-sectional properties of composites blades. The classical laminate plate 
theory is applied to obtain the effective moduli of the walls of composite blades. The St. Venant 
torsion theory is used to calculate the torsion constant of blade cross section. The location of 
shear center for any given cross- sections are determined according to the Trefftz' definition. 
A series of benchmark tests have been conducted to ensure adequate accuracy solution of 
cross-section properties for various cross-section blades. It is indicated that fair to good 
correlation is obtained for various cross-section beams and blades considered in comparison 
with experimental data and/or commercial finite element sectional analysis results. It is 
believed that KSec2D can be used as a useful tool to model and analyze arbitrary cross-
sections in the preliminary design stage of rotary wing vehicles. 
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