• Title/Summary/Keyword: Lactobacillus plantarum fermentation

Search Result 379, Processing Time 0.035 seconds

Effect of Lactic Fermentation and Spray Drying Process on Bioactive Compounds from Ngoc Linh Ginseng Callus and Lactobacillus plantarum Viability

  • Dong, Lieu My;Linh, Nguyen Thi Thuy;Hoa, Nguyen Thi;Thuy, Dang Thi Kim;Giap, Do Dang
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.346-355
    • /
    • 2021
  • Ngoc Linh ginseng is one of the most valuable endemic medicinal herbs in Vietnam. In this study, Ngoc Linh ginseng callus was fermented by Lactobacillus plantarum ATCC 8014 (at 6, 7, and 8 log CFU/ml) to evaluate the extraction efficiency of bioactive compounds. The post-fermentation solution was spray-dried using maltodextrin with or without Stevia rebaudiana (3% and 6% v/v) as the wall material. Bioactive compounds such as polyphenols, polysaccharides, and total saponins, and L. plantarum viability during fermentation and after spray-drying, as well as under simulated gastric digestion, were evaluated in this study. The results showed that probiotic density had a significant effect on bioactive compounds, and L. plantarum at 8 log CFU/ml showed the best results with a short fermentation time compared to other tests. The total content of polyphenols, polysaccharides, and saponins reached 5.16 ± 0.18 mg GAE/g sample, 277.2 ± 6.12 mg Glu/g sample, and 4.17 ± 0.15 mg/g sample, respectively after 20 h of fermentation at the initial density of L. plantarum (8 log CFU/ml). Although there was no difference in the particle structure of the preparation, the microencapsulation efficiency of the bioactive compound in the samples containing S. rebaudiana was higher than that with only maltodextrin. The study also indicated that adding S. rebaudiana improved the viability of L. plantarum in gastric digestion. These results showed that S. rebaudiana, a component stimulating probiotic growth, combined with maltodextrin as a co-prebiotic, improved the survival rate of L. plantarum in simulated gastric digestion.

Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

  • Ni, Kuikui;Wang, Yanping;Cai, Yimin;Pang, Huili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1123-1132
    • /
    • 2015
  • Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly.

Bioconversion of Soybean Isoflavone by Lactobacillus plantarum and Bifidobacterium longum (Lactobacillus plantarum과 Bifidobacterium longum을 이용한 대두 이소플라본의 비배당체로의 전환)

  • Kim, In-Bok;Shin, Sun;Lim, Byung-Lak;Seong, Gem-Soo;Lee, Young-Eun
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.214-219
    • /
    • 2010
  • In this study, phytoestrogen for the industrial production of soybean probiotics by lactic acid bacteria (LAB) was studied in a soybean extract. Soybean was fermented with LAB, Lactobacillus plantarum KCTC 3108 and Bifidobacterum longum ATCC 15707. The change in the content of various isoflavones (aglycone and glucoside) and the $\beta$-glucosidase activity in soybean during fermentation were investigated and shown to be dependent on the starter organism. Soybean extract powder fermented with L. plantarum showed the highest $\beta$-glucosidase activity and the greatest increase in the aglycone content. After 48h of fermentation, the contents of daidzin, genistin and glycitin in L. plantarum decreased from a mean initial levels of $83.03{\pm}2.17$, $168.13{\pm}8.17$ and $20.02{\pm}1.07$, respectively, to mean levels of $5.34{\pm}3.24$, $3.79{\pm}0.57$ and $1.87{\pm}1.09\;mg$/100 g. Whereas, after 48h fermentation, the contents of daidzein, genistein and glycitein increased from a mean initial levels of $8.09{\pm}0.78$, $11.20{\pm}0.84$ and $4.71{\pm}0.46$, respectively, to mean levels of $85.76{\pm}0.84$, $175.87{\pm}2.21$ and $22.41{\pm}0.91\;mg$/100 g. Taken together, these results suggested an increase of aglycones and decrease of glucoside in isoflavones occurred during fermentation, which coincided with an increase of $\beta$-glucosidase activity in the fermented soybean extract powder.

Enhancement of the Anti-inflammatory Activities of Aralia continentalis Kitagawa Extracts Fermented by Lactobacillus plantarum (추출용액에 따른 유산균 발효 땅두릅의 항염증 효과)

  • Woo, Young Min;Kim, Ok Ju;Jo, Eun Sol;Jo, Min Young;Ahn, Mee Young;Lee, Sang-Hyeon;Ha, Jong-Myung;Kim, Andre
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1438-1447
    • /
    • 2018
  • We investigated the anti-inflammatory activities of various organic solvent extracts with and without Lactobacillus plantarum fermentation of Aralia continentalis Kitagawa which has hypotensive effects in addition to excitatory effects on the central nervous system. It has been used to treat arthritis, colds, neuralgia, rheumatism, and itchy skin. Our extracts were tested for their anti-inflammatory potential on NO production and the expression of inflammatory factors in lipopolysaccharide-stimulated RAW264.7 macrophages. Extracts with and without L. plantarum fermentation were prepared using water, ethanol, hexane, ethyl acetate, and butanol. The RAW264.7 cells were tested for toxicity and the anti-inflammatory activity of each extract was determined at a concentration with no toxicity to the cells. The extracts used in this study significantly inhibited both the production of NO and the mRNA expression of COX-2 and iNOS, the major inflammatory factors. The production of inflammation-related cytokines $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ was also significantly reduced. These results suggest that the extracts involving fermentation by L. plantarum can inhibit cytokines by controlling the expression of inflammatory cytokine genes. It is considered that the water, ethanol, and butanol extracts after fermentation with L. plantarum could be useful as functional natural materials with anti-inflammatory effects.

Exploration of optimal Lactobacillus plantarum strains for curdling milk for yogurt and evaluation of physicochemical and sensory properties (호상 요구르트에 적합한 Lactobacillus plantarum strains 탐색 및 요구르트의 이화학적 및 관능 특성)

  • Jeong, Seong-Yeop;Lee, Yong Hyen;Kang, Suna;Shin, Bae Keun;Park, Sunmin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.548-554
    • /
    • 2016
  • Since some strains of kimchi lactobacilli can curdle milk, they can be used for making yogurt. However, the best Lactobacillus plantarum strains for curdling milk for yogurt are still unknown. In this study, we determined the best L. plantarum strains for curdling milk, and the physicochemical properties of yogurts made using different L. plantarum strains were examined. Three strains of L. plantarum useful for curdling milk were identified (YD2, YD9, YD12). The number of lactobacilli was lower in yogurts made with L. plantarum than in those made with control, and among the L. plantarum strains tested, YD12 had the highest bacterial counts. However, the microbial count reached $6.3{\times}10^8CFU/mL$ after 24-h fermentation in all yogurts. The pH of the yogurts decreased after 12-h fermentation, while the acidity increased. The low pH and high acidity decreased the viscosity in all the three types of yogurts, because the acids disturbed gel formation due to protein denaturation. Sensory evaluation revealed that the YD12 group showed a high percentage of completion similar to the control group. YD2 and YD9 showed a high sourness value and low sweetness value, whereas YD12 yielded optimal values for all the organoleptic characteristics. Therefore, YD12 would be a high quality bacterial strain for use as a yogurt starter culture.

Identification and Fermentation Characteristics of Lactic Acid Bacteria Isolated from Hahyangju Nuruk (하향주 누룩으로부터 분리한 젖산균의 동정 및 발효 특성)

  • Park, Chi-Duck;Jung, Hee-Kyoung;Park, Hwan-Hee;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • The purpose of this study was to isolate lactic acid bacteria, useful in the fermentation industry from Hahyangju Nuruk. Five strains were isolated, and identified as Lactobacillus based on growth inhibition by 10% (v/v) alcohol at pH 4.0. Isolated strains were identified to species, and named Lactobacillus plantarum L-3, L. sakei L-10, and L. curvatus strains L-8, L-11, and L-12. Morphological characteristics, physiological data, carbohydrate fermentation patterns, and 16S rRNA sequence data, were all used to characterize the bacterial isolates. L. plantarum L-3 showed the highest lactic acid productivity of all isolates, but grew only poony in the presence of 10% (v/v) alcohol at pH 4.0. The other strains exhibited lower lactic acid productivity than did L. plantarum L-3 and did not grow in the presence of 10% (v/v) alcohol at pH 4.0. The optimal temperature and pH for lactic acid production were $30^{\circ}C$ and pH 6.0 7.0, respectively. The lactic acid productivity of L. plantarum L-3, L. sakei L-10 and the three L. curvatus strains L-8, L-11, and L-12 were (% v/v of culture supematant) 1.55, 1.0, 1.06, 1.0, and 0.99, respectively, at $30^{\circ}C$ and pH 6.0. While L. plantarum L-3 suffered growth inhibition in the presence of 10% (v/v) alcohol, growth of the other strains was inhibited at 8% (v/v) alcohol.

Origin of lactic acid bacteria in mulkimchi fermentation

  • Hwang, Chung Eun;Haque, Md. Azizul;Hong, Su Young;Kim, Su Cheol;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.441-446
    • /
    • 2019
  • The assortment of endophytic lactic acid bacteria (LAB) in kimchi derives from its raw vegetables, which include Chinese cabbage, radish, welsh onion, onion, garlic, red pepper, and ginger. These vegetables were examined during mulkimchi fermentation using gene-specific multiplex polymerase chain reaction and 16S ribosomal RNA sequence analysis. Sixteen species from five LAB genera (Leuconostoc, Lactobacillus, Lactococcus, Pediococcus, and Weissella) appeared in the raw kimchi materials. Interestingly, nine LAB species were identified in mulkimchi on fermentation day 0 as follows: Leuconostoc carnosum, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc inhae, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis, and Weissella confusa. Seven additional LAB species were present in mulkimchi at fermentation day 9 as follows: Leuconostoc gasicomitatum, Leuconostoc kimchii, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus pentosus, Pediococcus pentosaceus, and Weissella koreensis. These species corresponded completely with the LAB in kimchi vegetables. Wei. confusa was the predominant LAB during early fermentation (pH 6.20 to 4.98 and acidity 0.20 to 0.64%), while Lac. sakei, Lac. plantarum, and Wei. koreensis became dominant later in fermentation (pH 4.98 to 3.88 and acidity 0.64 to 1.26%). These results collectively demonstrate that the LAB involved in mulkimchi fermentation originates from the raw vegetables examined.

Development of a Quantitative PCR for Detection of Lactobacillus plantarum Starters During Wine Malolactic Fermentation

  • Cho, Gyu-Sung;KrauB, Sabrina;Huch, Melanie;Toit, Maret Du;Franz, Charles M.A.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1280-1286
    • /
    • 2011
  • A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at $3.6{\times}10^6$ CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above $10^5$/ml for approx. 10 days, after which cell numbers decreased to levels of $10^3$ CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. $1{\times}10^2$ CFU/ml was detected. The minimum detection level for quantitative PCR in this study was $1{\times}10^2$ to $1{\times}10^3$ CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.

Isolation and Identification of Lactic Bacteria Containing Superior Activity of the Bile Salts Deconjugation (담즙산 분해능이 뛰어난 젖산균의 분리 및 동정)

  • 하철규;조진국;채영규;허강칠
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • The purpose of this study is to isolate probiotic lactic acid bacteria (LAB) that produced bile salts hydrolase. One hundred twenty strains were initially isolated from human feces. Based on their resistance of acid, tolerances of bile salts, and inhibitory activity against Escherichia coli, five strains were selected. A strain producing highest activity of bile salts hydrolase was identified as Lactoacillus plantarum using API carbohydrate fermentation pattern and 16S rRNA sequences, and named CK102. Lactobacillus plantarum CK102 survived at a level of 1.36${\times}$10$\^$8/ CFU/$m\ell$ in pH 2 buffer for 6 h and showed exhibited excellent bile tolerance. When L plantarum CK102 was cultured with E. coli in MRS broth, no viable cells of E. coli was detected after 18 h fermentation. These results suggest that Lactobacillus plantarum CK 102 may be commercially used for the probiotic culture.

Lactobacillus plantarum을 용균시키는 Bacteriophoge SC921의 분리 및 특성

  • Yoon, Sung-Sik;Shin, Young-Jae;Choi, Hak-Jong;Her, Song;Oh, Doo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 1997
  • Among the lactic flora responsible for the development of acidity and characteristic flavor of Kimchi which is a traditional fermented Chiness cabbage. Homofermentative Lactobacillus plantarum is rod-shaped and to be known to ewert major role during later fermentation period. Once this strain establishes main flaora in the Kimchi fermentation process, it gives rise to excess acid production to reduce the taste and quality of Kimchi during storage. As a primary work to increase the keeping quality using virulent Lactobaillus plantarum bacteriophages, it was isolated sucessfully from collected Kimchi samples and their characteristics were studied. The new isolated phage, named SC 921, adsorbed to its host without Ca$^{2+}$, and nearly eliminated at 60$\circ $C of heat treatment for 5 min. This phages were atable at pH 4~ 10 but inactivated below pH 3.0 or pH 11.0 above. The latent period, rise period, and burst size of this phage was 100 min, 120 min, 31$\pm $2pfu/ml, respectively. Electron micrograph showed the phages particles were unusually oval feature of head (dia 80~ 120 nm) without contractile tail.

  • PDF