DOI QR코드

DOI QR Code

Development of a Quantitative PCR for Detection of Lactobacillus plantarum Starters During Wine Malolactic Fermentation

  • Cho, Gyu-Sung (Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute for Nutrition and Food) ;
  • KrauB, Sabrina (Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute for Nutrition and Food) ;
  • Huch, Melanie (Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute for Nutrition and Food) ;
  • Toit, Maret Du (Institute for Wine Biotechnology, Stellenbosch University) ;
  • Franz, Charles M.A.P. (Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute for Nutrition and Food)
  • Received : 2011.07.04
  • Accepted : 2011.08.09
  • Published : 2011.12.28

Abstract

A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at $3.6{\times}10^6$ CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above $10^5$/ml for approx. 10 days, after which cell numbers decreased to levels of $10^3$ CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. $1{\times}10^2$ CFU/ml was detected. The minimum detection level for quantitative PCR in this study was $1{\times}10^2$ to $1{\times}10^3$ CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.

Keywords

References

  1. Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523. https://doi.org/10.1093/nar/7.6.1513
  2. Bjorkroth, J. and H. Korkeala. 1996. Evaluation of Lactobacillus sakei contamination in vacuum-packaged sliced cooked meat products by ribotyping. J. Food Prot. 59: 398-401.
  3. Cho, G.-S., A. Hanak, M. Huch, W. H. Holzapfel, and C. M. A. P. Franz. 2010. Investigation into the potential of bacteriocinogenic Lactobacillus plantarum BFE 5092 for biopreservation of raw turkey meat. Prob. Antimicrob. Prot. 2: 241-249. https://doi.org/10.1007/s12602-010-9053-4
  4. Cho, G.-S., M. Huch, A. Hanak, W. H. Holzapfel, and C. M. A. P. Franz. 2010. Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int. J. Food Microbiol. 141: 117-124.
  5. Chowdhury, B. R., R. Chakraborty, and U. Raychaudhuri. 2008. Study on beta-galactosidase enzymatic activity of herbal yogurt. Int. J. Food Sci. Nutr. 59: 116-122. https://doi.org/10.1080/09637480701447787
  6. Falentin, H., F. Postollec, S. Parayre, N. Henaff, P. Le Bivic, R. Richoux, A. Thierry, and D. Sohier. 2010. Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture. Int. J. Food Microbiol. 144: 10-19. https://doi.org/10.1016/j.ijfoodmicro.2010.06.003
  7. Franz, C. M., M. Du Toit, N. A. Olasupo, U. Schillinger, and W. H. Holzapfel. 1998. Plantaricin D, a bacteriocin produced by Lactobacillus plantarum BFE 905 ready-to-eat salad. Lett. Appl. Microbiol. 26: 231-235. https://doi.org/10.1111/j.1574-6941.1998.tb00508.x
  8. Fujimoto, J., T. Matsuki, M. Sasamoto, Y. Tomii, and K. Watanabe. 2008. Identification and quantification of Lactobacillus casei strain Shirota in human faeces with strain-specific primers derived from randomly amplified polymorphic DNA. Int. J. Food Microbiol.126: 210-215. https://doi.org/10.1016/j.ijfoodmicro.2008.05.022
  9. Fujimoto, J., K. Tanigawa, Y. Kudo, H. Makino, and K. Watanabe. 2011. Identification and quantification of viable Bifidobacterium breve strain Yakult in human faeces by using strain-specific primers and propidium monoazide. J. Appl. Microbiol. 110: 209-217. https://doi.org/10.1111/j.1365-2672.2010.04873.x
  10. Kleerebezem, M., J. Boekhorst, R. van Kranenburg, D. Molenaar, O. P. Kuipers, R. Leer, et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA 100: 1990-1995. https://doi.org/10.1073/pnas.0337704100
  11. Klein, D., P. Janda, R. Steinborn, M. Muller, B. Salmons, and W. H. Günzburg. 1999. Proviral load determination of different feline immunodeficiency virus isolates using real-time polymerase chain reaction: Influence of mismatches on quantification. Electrophoresis 20: 291-299. https://doi.org/10.1002/(SICI)1522-2683(19990201)20:2<291::AID-ELPS291>3.0.CO;2-R
  12. Kostinek, M., I. Specht, V. A. Edward, U. Schillinger, C. Hertel, W. H. Holzapfel, and C. M. Franz. 2005. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Syst. Appl. Microbiol. 28: 527-540. https://doi.org/10.1016/j.syapm.2005.03.001
  13. Kunkee, R. E. 1984. Selection and modification of yeasts and lactic acid bacteria for wine fermentation. Food Microbiol. 1: 315-332. https://doi.org/10.1016/0740-0020(84)90065-0
  14. Le Drean, G., J. Mounier, V. Vasseur, D. Arzur, O. Habrylo, and G. Barbier. 2010. Quantification of Penicillium camemberti and P. roqueforti mycelium by real-time PCR to assess their growth dynamics during ripening cheese. Int. J. Food Microbiol. 138: 100-107. https://doi.org/10.1016/j.ijfoodmicro.2009.12.013
  15. Lonvaud-Funel, A. 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76: 317-331. https://doi.org/10.1023/A:1002088931106
  16. Malorny, B., C. Lofstrom, M. Wagner, N. Kramer, and J. Hoorfar. 2008. Enumeration of Salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl. Environ. Microbiol. 74: 1299-1304. https://doi.org/10.1128/AEM.02489-07
  17. Maruo, T., M. Sakamoto, T. Toda, and Y. Benno. 2006. Monitoring the cell number of Lactococcus lactis subsp. cremoris FC in human feces by real-time PCR with strainspecific primers designed using the RAPD technique. Int. J. Food Microbiol. 110: 69-76. https://doi.org/10.1016/j.ijfoodmicro.2006.01.037
  18. Masco, L., T. Vanhoutte, R. Temmerman, J. Swings, and G. Huys. 2007. Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products. Int. J. Food Microbiol. 113: 351-357. https://doi.org/10.1016/j.ijfoodmicro.2006.07.021
  19. Miller, B. J., C. M. A. P. Franz, G.-S. Cho, and M. du Toit. 2011. Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions. Curr. Microbiol. 62: 1682-1688. https://doi.org/10.1007/s00284-011-9914-4
  20. Postollec, F., H. Falentin, S. Pavan, J. Combrisson, and D. Sohier. 2011. Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28: 848-861. https://doi.org/10.1016/j.fm.2011.02.008
  21. Pitcher, D. G., N. A. Saunders, and R. J. Owen. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8: 151-156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  22. Silva Lopes, M. de F., A. L. Leitão, M. Regalla, J. J. Marques, M. J. Carrondo, and M. T. Crespo. 2002. Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int. J. Food Microbiol. 76: 107-115. https://doi.org/10.1016/S0168-1605(02)00013-2
  23. Solieri, L. and P. Giudici. 2010. Development of a sequencecharacterized amplified region marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus oeni during wine malolactic fermentation. Appl. Environ. Microbiol. 76: 7765-7774. https://doi.org/10.1128/AEM.00929-10
  24. Towe, S., K. Kleineidam, and M. Schloter. 2010. Differences in amplification efficiency of standard curves in quantitative realtime PCR assays and consequences for gene quantification in environmental samples. J. Microbiol. Methods 82: 338-341. https://doi.org/10.1016/j.mimet.2010.07.005
  25. van Belkum, M. J. and M. E. Stiles 1995. Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl. Environ. Microbiol. 61: 3573-3579.
  26. Whitman, W. B., D. C. Coleman, and W. J. Wiebe. 1998. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 9512: 6578-6583.
  27. Xiang, S. R., M. Cook, S. Saucier, P. Gillespie, R. Socha, R. Scroggins, and L. A. Beaudette. 2010. Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms. Appl. Environ. Microbiol. 76: 7126-7135. https://doi.org/10.1128/AEM.00574-10
  28. Yousif, M. K., M. Huch, T. Schuster, G.-S. Cho, H. A. Dirar, W. H. Holzapfel, and C. M. A. P. Franz. 2010. Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol. 27: 757-768. https://doi.org/10.1016/j.fm.2010.03.012
  29. Zago, M., B. Bonvini, D. Carminati, and G. Giraffa. 2009. Detection and quantification of Enterococcus gilvus in cheese by real-time PCR. Syst. Appl. Microbiol. 32: 514-521. https://doi.org/10.1016/j.syapm.2009.07.001

Cited by

  1. Next-generation approaches to the microbial ecology of food fermentations vol.45, pp.7, 2011, https://doi.org/10.5483/bmbrep.2012.45.7.148
  2. 말로락틱 발효에 적합한 토착 Lactobacillus plantarum 분리 vol.51, pp.2, 2015, https://doi.org/10.7845/kjm.2015.5022
  3. Discovery and Characterization of Human-Urine Utilization by Asymptomatic-Bacteriuria-Causing Streptococcus agalactiae vol.84, pp.1, 2011, https://doi.org/10.1128/iai.00938-15
  4. Lactic acid bacteria communities in must, alcoholic and malolactic Tempranillo wine fermentations, by culture-dependent and culture-independent methods vol.243, pp.1, 2017, https://doi.org/10.1007/s00217-016-2720-2
  5. Inoculum Strategies and Performances of Malolactic Starter Lactobacillus plantarum M10: Impact on Chemical and Sensorial Characteristics of Fiano Wine vol.8, pp.4, 2011, https://doi.org/10.3390/microorganisms8040516
  6. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract vol.104, pp.13, 2011, https://doi.org/10.1007/s00253-020-10632-w