Browse > Article
http://dx.doi.org/10.48022/mbl.2106.06011

Effect of Lactic Fermentation and Spray Drying Process on Bioactive Compounds from Ngoc Linh Ginseng Callus and Lactobacillus plantarum Viability  

Dong, Lieu My (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry)
Linh, Nguyen Thi Thuy (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry)
Hoa, Nguyen Thi (Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry)
Thuy, Dang Thi Kim (Department of Plant Cell Technology, Institute of Tropical Biology)
Giap, Do Dang (Department of Plant Cell Technology, Institute of Tropical Biology)
Publication Information
Microbiology and Biotechnology Letters / v.49, no.3, 2021 , pp. 346-355 More about this Journal
Abstract
Ngoc Linh ginseng is one of the most valuable endemic medicinal herbs in Vietnam. In this study, Ngoc Linh ginseng callus was fermented by Lactobacillus plantarum ATCC 8014 (at 6, 7, and 8 log CFU/ml) to evaluate the extraction efficiency of bioactive compounds. The post-fermentation solution was spray-dried using maltodextrin with or without Stevia rebaudiana (3% and 6% v/v) as the wall material. Bioactive compounds such as polyphenols, polysaccharides, and total saponins, and L. plantarum viability during fermentation and after spray-drying, as well as under simulated gastric digestion, were evaluated in this study. The results showed that probiotic density had a significant effect on bioactive compounds, and L. plantarum at 8 log CFU/ml showed the best results with a short fermentation time compared to other tests. The total content of polyphenols, polysaccharides, and saponins reached 5.16 ± 0.18 mg GAE/g sample, 277.2 ± 6.12 mg Glu/g sample, and 4.17 ± 0.15 mg/g sample, respectively after 20 h of fermentation at the initial density of L. plantarum (8 log CFU/ml). Although there was no difference in the particle structure of the preparation, the microencapsulation efficiency of the bioactive compound in the samples containing S. rebaudiana was higher than that with only maltodextrin. The study also indicated that adding S. rebaudiana improved the viability of L. plantarum in gastric digestion. These results showed that S. rebaudiana, a component stimulating probiotic growth, combined with maltodextrin as a co-prebiotic, improved the survival rate of L. plantarum in simulated gastric digestion.
Keywords
Bioactive compounds; Ngoc Linh ginseng; Stevia rebaudiana; probiotic; spray drying;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhat R, Suryanarayana LC, Chandrashekara KA, Krishnan P, Kush A, Ravikumar P. 2015. Lactobacillus plantarum mediated fermentation of Psidium guajava L. fruit extract. J. Biosci. Bioeng. 119: 430-432.   DOI
2 Konoshima T, Takasaki M, Ichiishi E, Murakami T, Tokuda H, Nishino H, et al. 1999. Cancer chemopreventive activity of majonoside-R2 from Vietnamese ginseng, Panax vietnamensis. Cancer Lett. 147: 11-16.   DOI
3 Jeong JJ, Van LTH, Lee SY, Eun SH, Nguyen MD, Park JH, et al. 2015. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int. Immunopharmacol. 28: 700-706.   DOI
4 Yamasaki K. 2000. Bioactive saponins in Vietnamese ginseng, Panax vietnamensis. Pharm. Bbiol. 38: 16-24.   DOI
5 Kevers C, Jacques P, Gaspar T, Thonart P, Dommes J. 2004. Comparative titration of ginsenosides by different techniques in commercial ginseng products and callus cultures. J. Chromatogr. Sci. 42: 554-560.   DOI
6 Olennikov DN, Tankhaeva LM, Partilkhaev VV, Rokhin AV. 2012. Chemical constituents of Caragana bungei shoots. Rev. Bras. Farmacogn. 22: 490-496.   DOI
7 Kwon, JH, Belanger JM, Pare JJ. 2003. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology. J. Agric. Food Chem. 51: 1807-1810.   DOI
8 Hashemi SMB, Khaneghah AM, Barba FJ, Nemati Z, Shokofti SS, Alizadeh F. 2017. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Foods 38: 409-414.   DOI
9 Mousavi ZE, Mousavi SM, Razavi SH, Hadinejad M, EmamDjomeh Z, Mirzapour M. 2013. Effect of fermentation of pomegranate juice by Lactobacillus plantarum and Lactobacillus acidophilus on the antioxidant activity and metabolism of sugars, organic acids and phenolic compounds. Food Biotechnol. 27: 1-13.   DOI
10 Fritzen-Freire CB, Prudencio ES, Amboni RD, Pinto SS, Negrao-Murakami AN, Murakami FS. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res. Int. 45: 306-312.   DOI
11 Wilkowska A, Ambroziak W, Czyzowska A, Adamiec JJPJF, Sciences N. 2016. Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish J. Food Nutr. Sci. 66: 11-16.   DOI
12 Lieu MD, Le TKN, Nguyen TL, Dang TKT, Do DG. 2020. Effect of calcium-alginate bead and Anoectochilus formosanus Hayata extract fluid on the viability of Lactobacillus plantarum ATCC 8014 and bioactive compounds in fermented apple juice. Food Res. 4: 652-658.   DOI
13 dela Pena IJ, Kim HJ, Botanas CJ, De La Pena JB, Van Le TH, Nguyen MD, et al. 2017. The psychopharmacological activities of Vietnamese ginseng in mice: characterization of its psychomotor, sedative-hypnotic, antistress, anxiolytic, and cognitive effects. J. Ginseng Res. 41: 201-208.   DOI
14 Wu J, Lin L, Chau F. 2001. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 8: 347-352.   DOI
15 Narayanan N, Roychoudhury P, Srivastava A. 2004. L (+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7: 167-178.
16 Leroy F, De VL. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78.   DOI
17 Hur SJ, Lee SY, Kim YC, Choi I, Kim GB. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160: 346-356.   DOI
18 Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, et al. 2003. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur. J. Pharmacol. 473: 1-7.   DOI
19 Lemus-Mondaca R, Ah-Hen K, Vega-Galvez A, Honores C, Moraga NO. 2016. Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods Hum. Nutr. 71: 49-56.   DOI
20 Hou JW, Yu RC, Chou CC. 2000. Changes in some components of soymilk during fermentation with bifidobacteria. Food Res. Int. 33: 393-397.   DOI
21 Rokka S, Rantamaki P. 2010. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12.   DOI
22 Tchabo W, Ma Y, Kaptso GK, Kwaw E, Cheno RW, Xiao L, et al. 2019. Process analysis of mulberry (Morus alba) leaf extract encapsulation: Effects of spray drying conditions on bioactive encapsulated powder quality. Food Bioprocess Technol. 12: 122-146.   DOI
23 Li S, Chen T, Dong S, Xiong Y, Wei H, Xu F. 2014. The effects of rebaudioside A on microbial diversity in mouse intestine. Food Sci. Technol. Res. 20: 459-467.   DOI
24 Avila-Reyes SV, Garcia-Suarez FJ, Jimenez MT, San Martin-Gonzalez MF, Bello-Perez LA. 2014. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydr. Polym. 102: 423-430.   DOI
25 Menshutina NV, Gordienko MG, Voinovskiy AA, Zbicinski I. 2010. Spray drying of probiotics: process development and scale-up. Drying Technol. 28: 1170-1177.   DOI
26 Ozdemir T, Ozcan T. 2020. Effect of steviol glycosides as sugar substitute on the probiotic fermentation in milk gels enriched with red beetroot (Beta vulgaris L.) bioactive compounds. LWT 134: 109851.   DOI
27 Lopes SMS, Francisco MG, Higashi B, de Almeida RTR, Krausova G, Pilau EJ, et al. 2016. Chemical characterization and prebiotic activity of fructo-oligosaccharides from Stevia rebaudiana (Bertoni) roots and in vitro adventitious root cultures. Carbohydr. Polym. 152: 718-725.   DOI
28 Kim HN, Yoon JW, Moon SA, Choi SB, Seo YM, Park J, et al. 2016. Fermentation and quality characteristics during the storage of greek-style yogurt supplemented with stevia leaf extract. J. Milk Sci. Biotechnol. 34: 51-57.   DOI
29 Leamsomrong K, Suttajit M, Chantiratikul P. 2009. Flow injection analysis system for the determination of total phenolic compounds by using Folin-Ciocalteu assay. Asian J. Appl. Sci. 2: 184-190.   DOI
30 Mousavi Z, Mousavi S, Razavi S, Emam-Djomeh Z, Kiani H. 2011. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 27: 123-128.   DOI
31 Lopes SMS, Krausova G, Carneiro JWP, Goncalves JE, Goncalves RAC, de Oliveira AJB. 2017. A new natural source for obtainment of inulin and fructo-oligosaccharides from industrial waste of Stevia rebaudiana Bertoni. Food Chem. 225: 154-161.   DOI
32 Kalita D, Saikia S, Gautam G, Mukhopadhyay R, Mahanta CLJL. 2018. Characteristics of synbiotic spray dried powder of litchi juice with Lactobacillus plantarum and different carrier materials. LWT 87: 351-360.   DOI
33 Aymerich T, Artigas M, Garriga M, Monfort J, Hugas M. 2000. Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88: 686-694.   DOI
34 Patel R, Patel M, Suthar A. 2009. Spray drying technology: an overview. Indian J. Sci. Technol. 2: 44-47.   DOI
35 Lieu MD, Dang TKT, Nguyen TH. 2017. Viability of microencapsulated Lactobacillus casei in synbiotic mayonnaise. Food Res. 1: 234-239.   DOI
36 Anekella K, Orsat V. 2013. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Sci. Technol. 50: 17-24.   DOI
37 Yang Y, Chen L, Zhang XX, Guo Z. 2004. Microwave assisted extraction of major active ingredients in Panax quinquefolium L. J. Lliq. Chromatogr. Relat. Technol. 27: 3203-3211.   DOI