• Title/Summary/Keyword: Lactobacillus minor

Search Result 22, Processing Time 0.028 seconds

Control of Lactic Acid Bacterial Growth in Kimchi by Aromatic Amino Acids (방향족 아미노산에 의한 김치 유산균 생장의 제어)

  • Park, Hyeon-keun;Yang, Moon;Han, Hong-ui
    • Korean Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.247-251
    • /
    • 1997
  • Effects of amino acids on the lactic acid bacteria in kimchi were studied. 73 different lactic acid bacteria have been isolated during the kimchi fermentation at $15^{\circ}C$. Among these bacteria, dextran formers were occupied by 69.9%, of which Leuconostoc and Lactobacillus were 4.1% and 65.8%, respectively. All isolates didn't grow in a medium added with 500 ppm of tyrosine, whereas such an inhibition was not exhibited in kimchi with the same concentration of tyrosine. In kimchi added with tyrosine the lactic acid bacteria were less diverse than in the natural kimchi but the ratio of dextran formers were similar. As contrasted with natural kimchi, Leuconostoc was rather increased up to 41.4% and Lactobacillus was decreased down to 29.3%. Dominant species in each genus were Leu. mesenteroides and Lac. minor. Thus it is believed that tyrosine had inhibition effect for the growth of most Lactobacillus in kimchi.

  • PDF

Fermentative transformation of ginsenosides by a combination of probiotic Lactobacillus helveticus and Pediococcus pentosaceus (프로바이틱스 Lactobacillus helveticus와 Pediococcus pentosaceus의 조합에 의한 진세노사이드의 발효적 형질전환)

  • Palaniyandi, Sasikumar Arunachalam;Le, Bao;Kim, Jin-Man;Yang, Seung Hwan
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.436-441
    • /
    • 2018
  • Ginseng are native traditional herbs, which exhibit excellent pharmacological activities. Probiotic Lactobacillus helveticus KII13 and Pediococcus pentosaceus strain KID7 were used for ginsenoside transformation by fermenting crude ginseng extract to enhance minor gisenoside content. Thin-layer chromatography (TLC) analysis of fermented ginseng extract showed that the minor ginsenosides Rg3, Rh1, and Rh2 were main products after 5 days of fermentation. HPLC analysis was performed to quantify the major and minor ginsenosides. The Rg3 peak appeared on the 3rd day while the appearance of Rh2 peak and Rh1 peak were observed on the 5th day. The co-culture of L. helveticus KII13 and P. pentosaceus KID7 converted major ginsenosides (Rb1 and Rg1) into minor ginsenosides (Rg3, Rh2, and Rh1).

Biotransformation of Ginsenoside by Lactobacillus brevis THK-D57 Isolated from Kimchi (김치에서 분리한 Lactobacillus brevis THK-D57에 의한 인삼 사포닌의 생물학적 전환)

  • Yi, Eun-Ji;Lee, Jung-Min;Yi, Tae-Hoo;Cho, Seok-Cheol;Park, Yong-Jin;Kook, Moo-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.629-636
    • /
    • 2012
  • Ginsenosides, ginseng saponin, are the principal components responsible for the pharmacological and biological activities of ginseng. In order to improve absorption and biological activities, the biotransformation of major ginsenoside to minor ginsenoside, as the more active compound, is required. In this study, we isolated Lactobacillus brevis THK-D57, which has high ${\beta}$-glycosidase activity, from Kimchi. The major ginsenoside Rb1 was converted to the minor ginsenoside 'compound K' during the fermentation of L. brevis THK-D57. The results propose that the biotransformation pathway to produce compound K is as follows: ginsenoside $Rb_1{\rightarrow}ginsenoside$ $Rd{\rightarrow}ginsenoside$ $F_2{\rightarrow}ginsenoside$ compound K.

Complete genome sequence of Lactobacillus koreensis 26-25, a ginsenoside converting bacterium, isolated from Korean kimchi (김치에서 분리한 진세노사이드 전환 능력이 있는 Lactobacillus koreensis 26-25의 유전체 서열 분석)

  • Kim, Ju-Hyeon;Liu, Qing-Mei;Srinivasan, Sathiyaraj;Kim, Myung Kyum;Kim, Sang Yong;Wee, Ji-Hyang;Im, Wan-Taek
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.477-479
    • /
    • 2018
  • A Gram-positive, rod-shaped, ivory colored, and motile, Lactobacillus koreensis 26-25 was isolated from Korean kimchi. Strain 26-25 showed the ability of conversion from major ginsenosides into minor ginsenosides for which whole genome was sequenced. The whole genome sequence of Lactobacillus koreensis 26-25 consisted of one circular chromosome comprised of 3,006,812 bp, with a DNA G + C content of 49.23%. The whole genome analysis of strain 26-25 showed many glycosides hydrolase genes, which may contribute to identify the genes responsible for transformation of major ginsenosides into minor ginsenosides for its high pharmacological effects.

Real-Time PCR Monitoring of Lactobacillus sake, Lactobacillus plantarum, and Lactobacillus paraplantarum during Kimchi Fermentation

  • Um, Sang-Hee;Shin, Weon-Sun;Lee, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.595-598
    • /
    • 2006
  • Semi-quantitative monitoring of Lactobacillus sake and Lactobacillus plantarum, major and minor microorganisms in kimchi, respectively, and Lactobacillus paraplantarum, recently shown to be present in kimchi, was carried out by real-time polymerase chain reaction (PCR). Changes in the 3 species during kimchi fermentation were monitored by the threshold cycle ($C_T$) of real-time PCR. As fermentation proceeded at $15^{\circ}C$, the number of L. sake increased dramatically compared to those of L. plantarum and L. paraplantarum. During fermentation at $4^{\circ}C$, the growth rates of the 3 species decreased, but the proportions of L. plantarum and L. paraplantarum in the microbial ecosystem were almost constant. Considering the $C_T$ values of the first samples and the change in the $C_T$ value, the number of L. sake is no doubt greater than those of L. plantarum and L. paraplantarum in the kimchi ecosystem. L. sake seems to be one of the major microorganisms involved in kimchi fermentation, but there is insufficient evidence to suggest that L. plantarum is the primary acidifying bacterium.

Production of Minor Gisenosides from Gypenoside V (Gypenoside V로부터 minor ginsenosides의 생산)

  • Son, Na-Ri;Min, Jin-Woo;Jang, Mi;Kim, Hyo-Yeon;Jeon, Ji-Na;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.20-20
    • /
    • 2010
  • Panax ginseng C.A Meyer is frequently taken orally as a traditional herbal medicine in Asian countries. The major components of ginseng are ginsenoside, which are pharmaceutical activity. The six major ginsenosides, including Rb1, Rb2, Rc, Rd, Re and Rg1 account for 90% of total ginsenosides. Even though the minor ginsenosides, including Rg3, Rh2 and compound K has high pharmacetical activities, the price of minor ginsenosides is too high. Therefore we isolated the gypenoside V and made it converted to minor ginsenosides. In the plant Gynostemma pentaphyllum Makino, gypenosdie V was presented as dominant saponin (content about 2.4%), and was similar to protopanaxadol type ginsenosides such as ginsenoside Rb1. In this study, we confirmed that the coversion of gypenoside V to minor ginsenosides after using the various treatment such as heating, acid treatment, commercial edible enzyme, and lactobacillus. Consequently, we optimizied the transformation of gypenoside V to minor ginsenoside using Thin Layer Chromatography (TLC), High Performance Liquid Chromatography (HPLC), Time-of-flight Mass Spectrometry (LC/TOF/MS).

  • PDF

Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane (세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성)

  • Lee Yong Taek;Song Min-Ho
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.192-200
    • /
    • 2004
  • It is an anaerobic germ that Lactobacillus cell concentrated using ceramic membrane has high stability and long lifetime as compared with polymeric membrane. The effects of operating pressure, temperature, crossflow velocity on cell harvesting have been studied. Also the variation of flux and transmembrane pressure (TMP) with increasing concentration ratio and the change of TMP at constant concentration ratio (volumetric concentration factor: VCF) regarding the optimization have been examined. It showed that the permeate flux increased gradually with the increasing of transmembrane pressure, crossflow velocity, and volumetric concentration factor. The higher initial flux was due to the reduction of viscosity at elevated temperature. However, as operating time progressed, the effect of temperature was negligible since the effect of viscosity became minor. As a result, that operate in a constant concentration ratio, decreased degree could know that become slowly although the flux decreases according as operating time progressed. The flux is a very stable in the condition of constant VCF range. The yield of Latobaciilus (PS 406) which was cultivated at $37^{\circ}C$ was concentrated about 4.9{\times}10^9$ after operation.

Conversion of Ginsenoside Rd to Compound K by Crude Enzymes Extracted from Lactobacillus brevis LH8 (Lactobacillus brevis LH8이 생산하는 효소에 의한 Ginsenoside Rd의 Compound K로의 전환)

  • Quan, Lin-Hu;Liang, Zhiqi;Kim, Ho-Bin;Kim, Se-Hwa;Kim, Se-Young;Noh, Yeong-Deok;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides from the gastrointestinal tract is extremely low, when ginseng is orally administered. In order to improve absorption and its bioavailability, conversion of major ginsenosides into more active minor ginsenoside is very much required. Here, we isolated lactic acid bacterium (Lactobacillus brevis LH8) having ${\beta}-glucosidase$ activity from Kimchi. Bioconversion ginsenoside Rd by this bacterium in different temperatures was investigated. The maximum activities of crude enzymes precipitated by ethanol were shown in $30^{\circ}C$ and then gradually decreased. In order to compare the effect of pH, the crude enzymes of L. brevis LH8 were mixed in 20mM sodium phosphate buffer (pH 3.5 to pH 8.0) and reacted ginsenoside Rd. Ginsenoside Rd was almost hydrolyzed between pH 6.0 and pH 12.0, but not hydrolyzed under pH 5.0 and above pH 13.0. Ginsenoside Rd was hydrolyzed after 48 h incubation, whereas ginsenoside F2 appeared from 48 h to 72 h, and ginsenoside Rd was almost converted into compound K after 72 h.

Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

  • Park, Boyeon;Hwang, Hyelyeon;Lee, Jina;Sohn, Sung-Oh;Lee, Se Hee;Jung, Min Young;Lim, Hyeong In;Park, Hae Woong;Lee, Jong-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.524-530
    • /
    • 2017
  • Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results: L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ${\sim}2.6{\mu}g/mL$ to $6.5{\mu}g/mL$ and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

Classification of Isolates Originating from Kimchi Using Carbon-source Utilization Patterns

  • LEE, JUNG-SOOK;CHANG OUK CHUN;MIN-CHUL JUNG;WOO-SIK KIM;HONG-JOONG KIM;MARTIN HECTOR;SAM-BONG KIM;CHAN-SUN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.68-74
    • /
    • 1997
  • One hundred and eighty two lactic acid bacteria, isolated mainly from kimchi, including reference strains were examined for their ability to utilize 95 carbon sources. The test strains were assigned to 5 major, 1 minor and 12 single-membered clusters based on the $S_{SM}$, UPGMA algorithm (at similarity of $80{\%}$). These aggregate clusters were equivalent to the genus Leuconostoc (aggregate cluster M and N), the genus Lactobacillus (aggregate cluster Q and R), and the genera Lactobacillus and Leuconostoc (aggregate cluster O and P) according to the database of the Biolog system. This study demonstrates that rapid identification and classification of isolates originating from kimchi can be achieved on the basis of such carbon source utilization tests.

  • PDF