Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane

세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성

  • 이용택 (경희대학교 환경·응용화학대학) ;
  • 송민호 (경희대학교 환경·응용화학대학)
  • Published : 2004.09.01

Abstract

It is an anaerobic germ that Lactobacillus cell concentrated using ceramic membrane has high stability and long lifetime as compared with polymeric membrane. The effects of operating pressure, temperature, crossflow velocity on cell harvesting have been studied. Also the variation of flux and transmembrane pressure (TMP) with increasing concentration ratio and the change of TMP at constant concentration ratio (volumetric concentration factor: VCF) regarding the optimization have been examined. It showed that the permeate flux increased gradually with the increasing of transmembrane pressure, crossflow velocity, and volumetric concentration factor. The higher initial flux was due to the reduction of viscosity at elevated temperature. However, as operating time progressed, the effect of temperature was negligible since the effect of viscosity became minor. As a result, that operate in a constant concentration ratio, decreased degree could know that become slowly although the flux decreases according as operating time progressed. The flux is a very stable in the condition of constant VCF range. The yield of Latobaciilus (PS 406) which was cultivated at $37^{\circ}C$ was concentrated about 4.9{\times}10^9$ after operation.

본 연구에서는 유기질막에 비해 안정성이 우수하고 사용수명이 긴 세라믹 막을 이용하여 혐기성 Lactobacillus 균주의 농축에 관해서 연구하였다. Cell harvesting (CH)에 영향을 주는 인자로 막투과 압력, 온도, 선속도 등에 대해 조사하였으며 세라믹 막을 이용하여 농축율 변화에 따른 플럭스와 TMP (transmembrane pressure)의 변화, 일정 VCF(volumetric concentration factor)에서 TMP변화 등의 최적조건에 관해 알아보았다. 그 결과 플럭스는 TMP, 선속도, VCF가 증가함에 따라 투과수량도 증가함을 알 수 있었다. 온도가 증가할수록 점도에 의해 초기 플럭스도 증가하지만 시간이 경과함에 따라 막 표면의 겔층의 형성으로 온도의 영향은 미미하였다. 또한 농축비 이하의 일정한 VCF에서 운전할 경우 플럭스가 안정적임을 알 수 있었다. 선속도 5 m/s, 공급액의 온도 $37^{\circ}C$, TMP 1 bar에서 6∼8 h 운전할 경우 PS 406 원액의 생균수는 4.9{\times}10^9$으로 약 8배 농축됨을 알 수 있었다.

Keywords

References

  1. F. G. Heineken, R. J. O'connor, 'Continuous culture studies on the biosynthesis of alkalin-amylase by Bacillus subtilis NRRL-B3411', J. General Microbiology, 73, 35 (1972)
  2. G. B. Tanny, D. Hauk, and U. Marin, 'Biotechnical applications of a pleated crossflow microfiltration module', Desalination, 41, 299 (1982)
  3. S. Chandrasekaran and S. C. Dhar, 'A low-cost method for the production of extracellular alkaline proteinase using tapioca starch', J. Ferment. Technol., 61(5), 511 (1983)
  4. A. Eriksson, 'Some examples of the use of crossflow filtration in the downstream processing in a biochemical industry', Desalination, 53, 259 (1985)
  5. J. A. Asenjo, 'Separation process in biotechnology', Marcel Dekker, New York (1990)
  6. W. C. McGregor, 'Membrane Separation in Biotechnology', Marcel Dekker, New York (1986)
  7. G. Belfort, 'Membranes and Bioreactors: A Technical Challenge in Biotechnology', Biotech. Bioeng., 33, 1047 (1989)
  8. K. H. Kroner, V. Nissinen, and H. Ziegler, 'Improved dynamic filtration of microbial suspensions', Biotechnology, 5, 921 (1987)
  9. K. Scott, 'Handbook of industreal membranes', pp. 489, Elsevier Advanced Technology, 1st Ed., Oxford, UK (1995)
  10. N. M. Wade, 'Distillation plant development and cost update', Desalination, 136, 3 (2001)
  11. T. Bjorling, and M. Olofsson, 'Cell debris filtration tests with Alfa-Laval microfiltration cartridge'. ACHEMA Annual Meeting, Sweden (1988)
  12. K. Matsumoto, M. Kawahara, and H. Ohya, 'Crosflow filtration of yeast by microporous ceramic membrane with backwashing', J. Ferment. Technol., 66(2), 199 (1988)
  13. Ramesh R. Bhave, 'Inorganic Membranes: Synthesis, Characteristic and Application', Van Nostrand Reinhold, New York, 253 (1991)
  14. A. Persson, A. S. Jonsson, and G. Zacchi, 'Separation of lactic acid-producing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow'. Biotechnol. Bioeng., 72(3), 269 (2001)
  15. Siobhan F. E. Boerlage, Maria D. Kennedy, Paul A. C. Bonne, G. Galjaard, and Jan C. Schippers, 'Pridiction of flux decline in membrane systems due to particulate fouling' Desalination 113, 231 (1997)
  16. M. Cheryan 'Ultrafiltration Handbook' published by technomic publishing company (1986)
  17. R. D. Noble and S. A. Stem, 'Membrane Seperation Technology Principles and Application', Elsevier, Amsterdam, (1995)
  18. W. M. Lu and S. C. Ju, 'Selective particle deposition in crossflow filtration', Sep. & Tech., 24(7), 517 (1989)
  19. Y. T. Lee and S. E. Lee, 'Characteristics of glucose concentration using ceramic membrane', J. Korean Inst. of Chem. Eng., 39(1), 43 (2001)
  20. B. H. Chiang and M. Cheryan, 'Ultrafiltration of skim milk in hollow fiber', J. Food Sci., 51, 340 (1986)
  21. J. P. Labbe, A. Quemerais, F. Michel, and G. Daufin, 'Fouling of inorganic membranes during whey ultrafiltration': Analytical methodology, J. Membrane Sci., 51, 293 (1990)
  22. L. Lin, K. C. Rhee, and S. S. Koseoglu, 'Benchscale membrane degumming of crude vegetable oil: Process optimization', J Membrane. Sci., 134, 101 (1997)