• Title/Summary/Keyword: Lactobacillus bulgaricus

Search Result 163, Processing Time 0.025 seconds

Characterization and ACE Inhibitory Activity of Fermented Milk with Probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-Based Metabolomics Approach

  • Zhang, Min;Jiang, Yunyun;Cai, Miao;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.903-911
    • /
    • 2020
  • Addition of probiotics to yogurt with desired health benefits is gaining increasing attention. To further understand the effect of probiotic Lactobacillus plantarum on the quality and function of fermented milk, probiotic fermented milk (PFM) made with probiotic L. plantarum K25 and yogurt starter (L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus) was compared with the control fermented milk (FM) made with only the yogurt starter. The probiotic strain was shown to survive well with a viable count of 7.1 ± 0.1 log CFU/g in the PFM sample after 21 days of storage at 4℃. The strain was shown to promote formation of volatiles such as acetoin and 2,3-butanediol with milk fragrance, and it did not cause post-acidification during refrigerated storage. Metabolomics analysis by GC-MS datasets coupled with multivariate statistical analysis showed that addition of L. plantarum K25 increased formation of over 20 metabolites detected in fermented milk, among which γ-aminobutyric acid was the most prominent. Together with several other metabolites with relatively high levels in fermented milk such as glyceric acid, malic acid, succinic acid, glycine, alanine, ribose, and 1,3-dihydroxyacetone, they might play important roles in the probiotic function of L. plantarum K25. Further assay of the bioactivity of the PFM sample showed significant (p < 0.05) increase of ACE inhibitory activity from 22.3% at day 1 to 49.3% at day 21 of the refrigerated storage. Therefore, probiotic L. plantarum K25 could be explored for potential application in functional dairy products.

Detection of Bifidobacteria by ${\alpha}-Galactosidase$ activity (${\alpha}-Galactosidase$의 활력차이에 의한 Bifidobacteria의 선별)

  • Min, Hae-Ki;Lee, See-Kyung;Kang, Kook-Hee
    • Applied Biological Chemistry
    • /
    • v.36 no.3
    • /
    • pp.191-196
    • /
    • 1993
  • This method using the synthesis substrate of $5-bromo-4-chloro-3-indolyl-{\alpha}-galactoside\;(X-{\alpha}-Gal)$ was examined for the differential enumeration of Bifidobacteria and lactic acid-producing bacteria. Bifidobacteria possess a high level of ${\alpha}-galactosidase$ activity. Bifidobacterium longum KCTC 3215 exhibited the highest ${\alpha}-galactosidase$ specific activity (8.57 units/mg protein). Determination of ${\alpha}-galactosidase$ activity using the PNPG procedure showed that Lactobacillus, Streptococcus, Pediococcus, and Leuconostoc strain had lower ${\alpha}-galactosidase$ activity as compared to Bifidobacteria. The $X-{\alpha}-Gal$ based medium is useful to identify Bifidobacteria among lactic acid-producing bacteria since the enzyme action of ${\alpha}-galactosidase$ spills $X-{\alpha}-Gal$ substrate and releases indol which impacts a blue color to Bifidobacterial colonies on agar plates. All strains of Bifidobacteria appeared as blue colonies on MRS agar medium supplemented with $100\;{\mu}M\;X-{\alpha}-Gal$ while colonies of other lactic acid-producing bacteria appeared white or light blue.

  • PDF

Antioxidant Activity of Yogurt Fermented at Low Temperature and Its Anti-inflammatory Effect on DSS-induced Colitis in Mice

  • Yoon, Ji-Woo;Ahn, Sung-Il;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.162-176
    • /
    • 2019
  • This study was performed to evaluate the antioxidant activity of yogurt fermented at low temperature and the anti-inflammatory effect it has on induced colitis with 2.5% dextran sodium sulfate (DSS) in Balb/c mice. Yogurt premix were fermented with a commercial starter culture containing Lactobacillus acidophilus, Bifidobacterium lactis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus at different temperatures: $22^{\circ}C$ (low fermentation temperature) for 27 h and $37^{\circ}C$ (general fermentation temperature) for 12 h. To measure antioxidant activity of yogurt samples, DPPH, $ABTS^+$ and ferric reducing antioxidant potential (FRAP) assays were conducted. For animal experiments, inflammation was induced with 2.5% DSS in Balb/c mice. Yogurt fermented at low temperature showed higher antioxidant activity than that of the yogurt fermented at general temperature. In the inflammatory study, IL-6 (interleukin 6) was decreased and IL-4 and IL-10 increased significantly in DSS group with yogurt fermented at general temperature (DYG) and that with yogurt fermented at low temperature (DYL) compared to that in DSS-induced colitic mice (DC), especially DYL had higher concentration of cytokines IL-4, and IL-10 than DYG. MPO (myeloperoxidase) tended to decrease more in treatments with yogurt than DC. Additionally, yogurt fermented at low temperature had anti-inflammatory activity, although there was no significant difference with general temperature-fermented yogurt (p>0.05).

Effects of Oat Addition and Various Lactic Acid Bacteria on Quality Characteristics and Antioxidant Activity of Yogurt (유산균의 종류 및 귀리 첨가가 요구르트의 품질 및 항산화활성에 미치는 영향)

  • Lee, Mi Ja;Yang, Ji Yeong;Kim, Hyun Young;Song, Seung-Yeob;Seo, Woo Duck
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.6
    • /
    • pp.604-611
    • /
    • 2021
  • In this study, we investigated the effects of adding oat and lactic acid bacteria on the quality and functionality of yogurt. Yogurt was fermented with various lactic acid bacteria,; Lactobacillus acidophilus (LA), Lactobacillus delbrueckii sub. bulgaricus (LB), and Streptococcus thermophilussei (ST) and quality properties, β-glucan content, antioxidant activity were estimated. The quality of control and oat added yogurt (OY) showed significant differences depending on the type of strain and combination. The addition of oats significantly accelerated the lactic acid bacteria production, decreased the pH, and increased the titratable acidity and count of the viable cells compared to the control. Acid production was highest in ST, with the complex strains containing ST and LALBST showing high quality characteristics. The viscosity of oat yogurt was higher than that of the control group, and LALBST was also significantly higher than that of the control group. The β-glucan content of OY was 0.14-0.2%, and the organic acid content and antioxidant activity were also significantly increased by the addition of oats. As a result, it is thought that the addition of oats and a combination of lactic acid bacteria can be used for improving the quality and functionality of yogurt.

Quality Characteristics and Antioxidant Activity of Oat-added Curd Yogurt (귀리 첨가 호상 요구르트의 저장 중 항산화 활성 및 품질 특성)

  • Lee, Mi Ja;Kim, Hyun Young;Yang, Ji Yeong;Song, Seung-Yeob;Seo, Woo Duck;Choi, June-Yeol
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.5
    • /
    • pp.324-331
    • /
    • 2022
  • Recently, consumers' awareness of the importance of the intestinal action of lactic acid bacteria and intestinal microbes is increasing, as well as interest in yogurt. In this study, yogurt was prepared with three mixed strains (lactic acid bacteria combination, Lactobacillus acidophilus, Lactobacillus delbrueckii subsp., and Bulgaricus, Streptococcus thermophilussei, 1:1:1) by adding oats flour, and the quality characteristics of yogurt were investigated, while stored at a storage temperature of 4℃ for 12 days. According to the storage period, the control as wel as the oat yogurt showed slight decrease in pH, and no significant change in acidity. Sugar content slightly increased. and brightness decreased, in the control and the oat yogurt. Visible cell numbers increased during storage, and decreased on the 12th day. Viscosity in the oat yogurt was 7,580 cP, which was approximately eight times higher than that of the control group, and decreased gradually according to the storage period. Antioxidant activity (DPPH) was approximately two times higher in the oat-added yogurt, and slightly increased with the storage period, decreased on the 12th day of storage, and β-glucan was detected only in oat-added yogurt.

Bioconversion of Isoflavone and Soyasaponin in the Fermentation of Soy Embryo Using Lactic Acid Bacteria (콩배아의 Lactobacillus plantarum 발효에 의한 이소플라본과 소야사포닌 변화)

  • Lee, Mi Ja;Park, Song Yi;Lee, Kwang sik;Kim, Hyun young;Ra, Ji Eun;Ham, Hyeon Mi
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.209-216
    • /
    • 2019
  • The effects of fermentation on soy embryo have been investigated using lactic acid bacteria, Lactobacillus acidophilus (LA), Lactobacillus bulgaricus (LB), Streptococcus thermophilussei (ST), and Lactobacillus plantarum (LP). As a result of the fermentation test of the isoflavone conversion by strain type, inoculation content, and fermentation time, the optimum conditions were LP bacterium, an inoculum amount of 5%, and a fermentation time of 24 hours. The composition of the isoflavone glycosides in the control was the highest in the order of glycitin> daidzin> genistin. When fermented with lactic acid bacteria, glycoside content decreased, and aglycone content increased. The order of composition was daidzein>glycitein>genistein. In the fermentation with LP bacterium, soyasaponin Ab content decreased and Ba and Bb content increased. Upon assessing the result of the experiment, it was found that the pH of the fermentation broth had a great influence in the bioconversion of isoflavone and soyasaponin. In the case of fermentation by pH 6 broth, aglycone and Bb content was the highest. The increase of aglycone content by fermentation reaction with the LP bacterium can increase the physiological activity and functionalization of soy embryo, which is a byproduct of processing.

Measurement of Lactoferrin, IgA, IgG1, IgG2, Antibacterial Activity, and Lactic Acid Bacterial Growth in Holstein Colostrum (Holstein 초유 중 Lactoferrin, IgA, IgG1, IgG2 정량과 미생물의 성장에 미치는 영향)

  • Renchinthand, Gereltuya;Bae, Hyoung-Churl;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.522-530
    • /
    • 2007
  • This experiment was carried out to measure the content of lactoferrin, IgA, $IgG_1,\;IgG_2$, in Holstein colostrum, and to test the effect of it's colostrum on the antibacterial activity to pathogenic bacteria and the growth stimulation of lactic acid bacteria. Colostrum was collected at the first, second, and third day after parturition in summer and winter season. The levels of lactoferrin, IgA, $IgG_1,\;and\;IgG_2$ in Holstein cow colostrum were 0.30 mg/mL, 0.37 mg/mL, 4.00 mg/mL, 0.37 mg/mL, respectively, on the first day of the summer season whereas they were 1.16 mg/mL, 2.60 mg/mL, 13.35 mg/mL, 1.30 mg/mL on the first day of the winter season, postpartum. Heat treated ($65^{\circ}C$ for 30 min) or non-treated colostrum showed antibacterial activity toward Escherichia coli. The growth of commercial mixed strains (Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus themophilus), L. acidophilus, L. casei, L. bulgaricus, and L. lactis subsp. cremoris were improved in first, second and third day colostrum compared to normal milk. Commercial miked strains (B. longum, L. acidophilus S. themophilus) lowered the pH to 4.97-5.22 and 4.89 while increasing the titratable acidity to 0.75-0.88% and 0.70% in colostrum and normal milk, respectively. However, L. casei, L. bulgaricus, L. lactis subsp. cremoris lowered the pH to 5.96-6.47 and 6.5-6.8 while increasing the titratable acidity to 0.29-0.48% and 0.20-0.25% in colostrum and normal milk, respectively.

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce (간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제)

  • Jung, Sung-Sub;Choi, Jung-I;Joo, Woo-Hong;Suh, Hyun-Hyo;Na, Ae-Sil;Cho, Yong-Kweon;Moon, Ja-Young;Ha, Kwon-Chul;Paik, Do-Hyeon;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.

Utilization of fermented skipjack tuna viscera as a dietary protein source replacing fish meal or soybean meal for juvenile abalone Haliotis discus hannai

  • Lee, Sang-Min;Kim, Kyoung-Duck;Kim, Tae-Jin
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.73-73
    • /
    • 2003
  • This study was carried out to evaluate the utilization of fermented skipjack tuna viscera (FSTV) in the diet for juvenile abalone Haliotis discus hannai. Lactobacillus bulgaricus was used for fermentation of skipjack tuna viscera. Eight isonitrogenous (about 30% crude protein) diets were formulated to include different levels (0%, 10%, 20% and 30%) of FSTV as a replacer of either dietary fish meal or soybean meal. Three replicate groups of abalone were fed the experimental diets containing different levels of FSTV for 7 weeks. The inclusion of FSTV up to 30% in fish meal-based diet had no significant effect on survival, body weight, shell growth, and proximate composition of abalone (P>0.05). Weight gain of abalone fed the diet substituting 10% FSTV for soybean meal was not significantly different to that of abalone fed the control diet, however this value decreased in abalone fed the 20% and 30% FSTV (P<0.05).The contents of crude protein and lipid of soft body in abalone fed soybean meal-based diets were significantly affected by dietary FSTV level (P<0.05). The results of this study indicate that FSTV can be used as a partial substitute protein source for fish meal or soybean meal in the formulated diet for juvenile abalone.

  • PDF

Effect of Colored Barley Flours on Quality Characteristics of Fermented Yogurt by Lactobacillus spp.

  • Lee, Nayoung;Lee, Mi-Ja
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Quality characteristics of yogurt with added colored barely flour was investigated during fermentation by lactic acid bacteria. Chemical properties such as moisture, crude protein, starch, ash and ${\beta}$-glucan contents was measured. pH, acidity, brix, Hunter color value and growth of lactic acid bacteria in yogurt was investigated during fermentation by L. acidophilus, L. bulgaricus, and S. thermophilus mixed culture. Crude protein contents of Daeanchal and Boseokchal was 16.16 and 12.17%, respectively. Starch contents of daeanchal were shown lower score. The pH of yogurt by addition of barley flour (Daeanchal) addition 0 and 20% were 6.66 and 6.40, respectively. The pH of yogurt supplemented with barley flour tended to be lower than before control which was not added barely flours and oligosaccharide in yogurt. Titratable acidity of yogurt added barley flour was higher compared with that of control. Brix of yogurt was decreased during fermentation by lactic acid bacteria. Lightness of yogurt added barley flour (Daeanchal) addition 0 and 20% were 83.25 and 69.83, respectively. The original microbial population of the yogurt during 0, 5, 8, and 15 hr fermentation were 7.48, 7.79, 8.15, and 8.71 Log CFU/g, respectively. Moreover, the addition of colored barley flour was to promote the proliferation of lactic acid bacteria in yogurt. In our research, addition of colored barley flours added into the yogurt may also have contributed to growth of lactic acid bacteria.