• Title/Summary/Keyword: Lactobacillus Plantarum

Search Result 805, Processing Time 0.022 seconds

Physicochemical Properties and Biological Activities of Tenebrio molitor Fermented by Several Kinds of Micro-organisms (유용 미생물을 이용한 발효갈색거저리 추출물의 이화학적 특성 및 생리활성 효과)

  • Jang, Sung-Ho;Sim, So-Yeon;Ahn, Hee-Young;Seo, Kwon-Il;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.923-930
    • /
    • 2018
  • In this study, Tenebrio molitor (T. molitor) was fermented with Lactobacillus plantarum JBMI F3 (F3), Lactobacillus plantarum JBMI F5 (F5), Lactobacillus gasseri Ba9 (Ba9), Aspergillus kawachii KCCM 32819 (Ak), Saccharomyces cerevisiae KACC 93023 (Sc), and Bacillus subtilis KACC 91157 (Bs). After fermentation, the fermented products were extracted by water, ethanol, and methanol, and their physicochemical and biological properties were investigated. In a DPPH assay, the water extracts of the fermented products of T. molitor showed high antioxidant ability. Among the water extracts, the fermented product by Bs showed the highest DPPH radical scavenging activity. The total contents of phenolic compounds and flavonoids were highest in the fermented products by Ak and Bs, respectively. Reducing activity was detected the most high activity on ethanol extract of fermented product by Bs. The water extract of the fermented product by Bs exhibited strong enzymatic activity for fibrinogen and starch hydrolysis. Based on the observed physicochemical and biological properties, the fermented products of T. molitor by microorgansims can likely be applied as functional materials in various industries.

Effect of Lactic Acid Bacteria on the Qualities of White Pan Bread (빵의 품질에 미치는 유산균의 영향)

  • 장준형;안재법
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.509-515
    • /
    • 1996
  • The effects of sour liquid ferments with lactic acid bacteria on the baking properties and qualities of White Pan Bread were studied. The mixed culture of Lactobacillus brevis and Lactobacillus plantarum had higher acid equivalents and lower pH-values than single or mixed culture of other lactic acid bacteria which had been used for traditional sour dough bread. Optimum conditions of the incubation of lactic acid bacteria, which are incubation temperature time and culture medium compositions for lactic fermentation, were also investigated to find out optimum activity for good bread making. The mixed culture of L. brevis and l. plantarum incubated for 24 hours at 3$0^{\circ}C$ had the most optimum activity for bread manufacturing process and the qualities of the products. The addition of sour liquid ferments to the sponge dough effected on fermentation activity of the sponge dough to lower the level of pH to 4.64 and to produce more total titratable acidity(TTA) of 0.545, whereas conventional sponge dough bread had 0.46% of TTA. On comparison with control bread, the bread made with sour liquid ferments was found to have better specific volume, taste, symmetry, especially, organoleptic characteristics due to lactic acid, acetic acid and amino acid produced by lactic acid bacteria. Sour dough bread with liquid ferment was considered to be more effective to the inhibition of staling during storage for 6 days at $25^{\circ}C$ and to have longer shelf-than control.

  • PDF

Selection of Mixed Lactic Acid Bacteria for Optimal Sponge Fermentation of Soda Cracker (소다 크레커의 최적 스폰지 발효를 위한 혼합젖산균의 선별)

  • Kim, Sang-Yong;Lee, Byung-Don;Kim, Jung-Min;Lim, Dong-Joon;Kim, Woo-Jung;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.150-155
    • /
    • 1997
  • The twenty strains of Lactobacillus genus were tested for the optimal sponge fermentation of soda cracker. The six strains such as L. brevis, L. delbrueckii, L. fermentum, L. leichmanii, L. plantarum and L. sanfrancisco were selected because these strains did not smell off-flavor and showed the high value of TTA (total titrable acidity) after the fermentation. The selected strains consisted of the five strains of L. brevis, L. delbrueckii, L. fermentum, L. leichmanii and L. plantarum that mainly inhabited soda clacker and L. sanfrancisco that existed in San Francisco bread. The lactic acid bacteria were inoculated to the medium containing 10% wheat flour and then pH, TTA, acetic acid and lactic acid were measured during the sponge fermentation. The four strains of L. brevis, L. delbrueckii, L. fermentum and L. plantarum were used for the mixed lactic acid bacteria of sponge fermentation because the TTAs of L. brevis, L. fermentum and L. plantarum were higher than those of other lactic acid bacteria and L. delbrueckii rapidly produced organic acids and a large amount of acetic acid. Among the combination of L. brevis, L. fermentum, L. delbrueckii and L. plantarum, the mixed lactic acid bacteria of L. brevis, L. fermentum and L. plantarum showed the highest TTA, the lowest pH and the largest amount of acetic acid. Therefore, the mixed lactic acid bacteria of L. brevis, L. fermentum and L. plantarum were used for optimal sponge fermentation of soda cracker.

  • PDF

Protease Activity of Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food (전통 발효식품으로부터 Protease 활성을 보유한 유산균의 분리 및 동정)

  • Kook, Moo Chang;Cho, Seok Cheol;Park, Hoon;Kim, Seung Seop;Pyun, Yu Ryang;Choi, Woon Yong;Lee, Hyeon Yong
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.182-187
    • /
    • 2011
  • A proteolytic lactic acid bacterium was isolated from Korean traditional fermented foods. The isolate BV-26, which had a protease activity (24 U/mg-crude protein), was identified as Lactobacillus plantarum by the API 50CHL kit and 16S rDNA analysis (99.9% of homology), and named as L. plantarum BV-26. Cell growth and protease activity of L. plantarum BV-26 was determined in MRS broth using 5L jar fermentor at $30^{\circ}C$. The maximum growth of L. plantarum BV-26 was reached at 18 hr in MRS broth, while protease activity of BV-26 was detectable at 12 hr and the highest activity was obtained after 16 hr cultivation. Therefore, we expect that the proteolytic lactic acid bacteria, L. plantarum BV-26, may be used as a starter for the fermentation of animal feed. Especially, the fermentation of soybean meal with the strain can be applied for improving feed utilization.

Evaluation of γ-Aminobutyric Acid (GABA) Production by Lactic Acid Bacteria Using 5-L Fermentor (Lactic Acid Bacteria (LAB)와 5-L 발효기를 이용한 γ-Aminobutyric Acid 생산기술 개발)

  • Kim, Na Yeon;Kim, Ji Min;Ra, Chae Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.559-565
    • /
    • 2021
  • This study aimed to optimize gamma-aminobutyric acid (GABA) production by employing five strains of lactic acid bacteria (LAB) that were capable of high cell growth and GABA production using a modified synthetic medium. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. Lactobacillus plantarum SGL058 and Lactococcus lactis SGL027 were selected as the suitable strains for GABA production. The conditions of the carbon and nitrogen sources were determined as 5 g/l glucose (L. plantarum SGL058), 5 g/l lactose (L. lactis SGL027), 10 g/l yeast extract (L. plantarum SGL058), and 20 g/l yeast extract (L. lactis SGL027) for GABA production. The cell growth, monitored by optical density at 600 nm, was 5.93 for L. plantarum SGL058. This value was higher than the 3.04 produced by L. lactis SGL027 at 36 h using a 5-L fermenter. The highest concentration of GABA produced was 546.7 ㎍/ml by L. plantarum SGL058 and 404.6 ㎍/ml by L. lactis SGL027, representing a GABA conversion efficiency of (%, w/w) of 4.0% and 3.4%, respectively. The fermentation profiles of L. plantarum SGL058 and L. lactis SGL027 provide a basis for the utilization of LAB in GABA production using a basal synthetic medium.

Comparative Analysis of the Complete Genome of Lactobacillus plantarum GB-LP2 and Potential Candidate Genes for Host Immune System Enhancement

  • Kwak, Woori;Kim, Kwondo;Lee, Chul;Lee, Chanho;Kang, Jungsun;Cho, Kyungjin;Yoon, Sook Hee;Kang, Dae-Kyung;Kim, Heebal;Heo, Jaeyoung;Cho, Seoae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.684-692
    • /
    • 2016
  • Acute respiratory virus infectious diseases are a growing health problem, particularly among children and the elderly. Much effort has been made to develop probiotics that prevent influenza virus infections by enhancing innate immunity in the respiratory tract until vaccines are available. Lactobacillus plantarum GB-LP2, isolated from a traditional Korean fermented vegetable, has exhibited preventive effects on influenza virus infection in mice. To identify the molecular basis of this strain, we conducted a whole-genome assembly study. The single circular DNA chromosome of 3,284,304 bp was completely assembled and 3,250 protein-encoding genes were predicted. Evolutionarily accelerated genes related to the phenotypic trait of anti-infective activities for influenza virus were identified. These genes encode three integral membrane proteins, a teichoic acid export ATP-binding protein and a glucosamine - fructose-6-phosphate aminotransferase involved in host innate immunity, the nonspecific DNA-binding protein Dps, which protects bacteria from oxidative damage, and the response regulator of the three-component quorum-sensing regulatory system, which is related to the capacity of adhesion to the surface of the respiratory tract and competition with pathogens. This is the first study to identify the genetic backgrounds of the antiviral activity in L. plantarum strains. These findings provide insight into the anti-infective activities of L. plantarum and the development of preventive probiotics.

Screening of Lactic Acid Bacteria as a Starter Culture in Fermented Sausage (발효소시지 제조에 적합한 스타터 선발)

  • Yoo, Seon-A;Seo, Seung-Ho;Park, Seong-Eun;Son, Hong-Seok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1289-1295
    • /
    • 2014
  • The aim of this study was to select the most suitable starter cultures for production of fermented sausages. A total of 27 strains isolated from Korean fermented foods and natural substances were characterized with respect to their physicochemical properties in a fluid (submerged) model system modified according to the special conditions of fermented sausages. Three of these strains were pre-selected for testing as potential cultures based on their ability to grow fast and initiate rapid acidification. The selected strains were identified by API and partial sequence analysis of 16S rRNA. The results exhibited sequence similarity to known sequences of Staphylococcus warneri, Staphylococcus epidermidis and Lactobacillus plantarum. Among them, relatively good growth properties and nitrite reduction activities were detected for S. epidermidis and L. plantarum and low pH values and high total acidities were observed in the model system fermented with these isolates compared with reference strains.

Isolation and characterization of cholesterol-lowering lactic acid bacteria from kimchi (김치에서 분리된 콜레스테롤 감소능을 가진 젖산세균의 특성)

  • Park, Hong-Yeop;Park, Seul-Ki;Kim, Bo-Geum;Ryu, Dae-Gyu;Lim, Eun-Seo;Kim, Young-Mog
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.377-382
    • /
    • 2017
  • The objective of this study was to isolate and characterize lactic acid bacteria (LAB) exhibiting cholesterol-lowering activity from the Korean traditional fermented food, kimchi. The previously isolated LAB strains were assessed for cholesterol-lowering efficacy in the presence of 0.1% cholesterol. All LAB strains tested in this study were able to assimilate cholesterol at varying levels, ranging from 35.0 to 99.4%. Among them, the Lactobacillus plantarum FMB 31 strain exhibited the highest cholesterol-lowering effect with 99.4% cholesterol removal efficiency. The strain was stable in the presence of acid, bile, and salt stress, and showed high adherence on HT-29 cells, a human colon line. In addition, the LAB strain showed no pathogenic properties such as the production of hemolysin and biogenic amines. Thus, this study suggests that the L. plantarum FMB 31 strain isolated from kimchi can be a potential source of probiotic products with strong cholesterol-lowering effect.

Isolation of Garlic Resistant Lactic Acid Bacteria for Feed Additives (사료용 생균제 개발을 위한 마늘 내성 유산균의 분리)

  • Kim, Yu-Jin;Jang, Seo-Jung;Park, Jung-Min;Kim, Chang-Uk;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.352-359
    • /
    • 2009
  • Lactic acid bacteria was isolated for the production of probiotic animal feed supplemented with garlic and its antimicrobial properties were investigated. A total of 112 strains of lactic acid bacteria which grew on the medium containing garlic extract were isolated from kimchi, jeotgal, and jangachi. Among them 14 strains were tested for acidand bile salt-resistance as well as antimicrobial activities against animal pathogenic bacteria such as Salmonella choleraesuis, Escherichia coli, Staphylococcus aureus, and Shigella flexneri. Of these strains, a strain P'GW50-2 from pickled scallion with most desirable properties was selected and identified as Lactobacillus plantarum TJ-LP-002. Antimicrobial activity of L. plantarum TJ-LP-002 showed relatively wide range of inhibition spectrum against Gram negative bacteria such as Aeromicrobium hydrophila, E. coli, Pseudomonas, Salmonella, Shigella, and some Gram positive bacteria such as Bacillus cereus, Staphylococcus aureus, Clostridium perfringens, and Propionibacterium.

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.