Protease Activity of Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food

전통 발효식품으로부터 Protease 활성을 보유한 유산균의 분리 및 동정

  • Kook, Moo Chang (Department of Marine biotechnology, Anyang University) ;
  • Cho, Seok Cheol (Skin Biotechnology Center, Kyung Hee University) ;
  • Park, Hoon (Department of Food Science, Sun Moon University) ;
  • Kim, Seung Seop (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Research Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Pyun, Yu Ryang (R&D Division, Biovan Co., Ltd.) ;
  • Choi, Woon Yong (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Research Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Lee, Hyeon Yong (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Research Institute of Bioscience and Biotechnology, Kangwon National University)
  • 국무창 (안양대학교 해양생명공학과) ;
  • 조석철 (경희대학교 피부생명공학센터) ;
  • 박훈 (선문대학교 식품과학과) ;
  • 김승섭 (강원대학교 BT 특성화대학 생물소재공학전공.생명공학연구소) ;
  • 변유량 ((주) 바이오벤 연구개발팀) ;
  • 최운용 (강원대학교 BT 특성화대학 생물소재공학전공.생명공학연구소) ;
  • 이현용 (강원대학교 BT 특성화대학 생물소재공학전공.생명공학연구소)
  • Received : 2010.10.22
  • Accepted : 2011.03.03
  • Published : 2011.05.30

Abstract

A proteolytic lactic acid bacterium was isolated from Korean traditional fermented foods. The isolate BV-26, which had a protease activity (24 U/mg-crude protein), was identified as Lactobacillus plantarum by the API 50CHL kit and 16S rDNA analysis (99.9% of homology), and named as L. plantarum BV-26. Cell growth and protease activity of L. plantarum BV-26 was determined in MRS broth using 5L jar fermentor at $30^{\circ}C$. The maximum growth of L. plantarum BV-26 was reached at 18 hr in MRS broth, while protease activity of BV-26 was detectable at 12 hr and the highest activity was obtained after 16 hr cultivation. Therefore, we expect that the proteolytic lactic acid bacteria, L. plantarum BV-26, may be used as a starter for the fermentation of animal feed. Especially, the fermentation of soybean meal with the strain can be applied for improving feed utilization.

김치 및 젓갈 등의 150여 전통 발효 식품을 시료로 하여 protease 활성을 갖는 유산균을 분리한 결과, 24 U/mgcrude protein의 높은 활성을 갖는 젖산균 BV-26 균주을 분리하였다. API 50CHL kit를 이용하여 BV-26 균주의 당 이용성을 분석하고 16S rRNA 염기서열(99.9% 상동성)을 비교한 결과, 분리된 균주를 L. plantarum BV-26으로 표기 하였다. L. plantarum BV-26의 생장과 protease 활성 변화를 MRS 배지를 이용하여 측정한 결과, L. plantarum BV-26의 생장은 배양 6시간 이후 활발하게 진행되어 18시간에 최고의 균체 농도를 보였으며, protease 활성은 배양 후 12시간부터 생성되기 시작하여 16시간에서 최고의 활성을 나타내는 것으로 확인되었다. 따라서 본 연구에서 분리된 L. plantarum BV-26을 동물사료의 발효용 스타터로 이용할 경우 유산균이 갖는 유익한 장점 및 안전성을 확보할 수 있을 뿐만 아니라, 특히 대두박의 발효시 사료의 영양적 가치를 높일 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. Ahn YS, Kim YS, Shin DH. 2006, Isolation, identification, and fermentation characteristics of Bacillus sp. with high protease activity from traditional Cheonggukjang. Kor. J. Food. Sci. Technol. 38: 82-87.
  2. Ammor MS, Mayo B. 2007, Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76: 138-1462. https://doi.org/10.1016/j.meatsci.2006.10.022
  3. Ayebo AD, Angelo IA, Shahani KM. 1980, Effect of ingesting Lactobacillus milk upon flora and enzyme activity in humans. Milchwissenschaft. 35: 730-733.
  4. Back SY, Do JR, Do GP, Kim HK. 2010, Effect of angiotensin-I converting enzyme inhibitory from hydrolysate of soybean protein isolate. J. Kor. Soc. Food Sci. Nutr. 39: 8-13. https://doi.org/10.3746/jkfn.2010.39.1.008
  5. Cha IT, Oh YS, Roh DH 2007, Isolation and Characterization of Micrococcus sp. HJ-19 secreting extracellular protease. Kor. J. Microbiol. 43: 222-226.
  6. Cho JS. 1989, Supply and demand of products, present condition and the point of issue of research of Korean soy seasonings. Food Sci. Ind. 22: 28-36.
  7. Cho KK, Li GH, Cho SJ, Yoon YC, Hwang SG, Heo KC, Choe IS. 2007, The identification and physiological properties of Lactobacillus plantarum JK-01 isolated from Kimchi. Korean J. Food Sci. Ani. Resour. 27: 363-370. https://doi.org/10.5851/kosfa.2007.27.3.363
  8. Cho YH, Park SN, Jeong SH. 2009, A study of the physiological activity and industrial prospects of plant-origin lactic acid bacteria. Kor. J. Dairy Sci. Technol. 27: 53-57.
  9. Cho YH, Oh SJ. 2010, Casein phosphopeptide-producing activity and proteolytic ability by some lactic acid bacteria. Kor. J. Food Sci. Ani. Resour. 30: 443-448. https://doi.org/10.5851/kosfa.2010.30.3.443
  10. Crewth WC. 1963, The effects of pH and cations on the thermal densturation of trypsin. Aus. J. Biol. 6: 597-601.
  11. Denkin SM, Nelson DR. 1999, Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 65: 3555-3560.
  12. Fukushima J, Yamato J, Morihara K, Atsumi Y, Takeuchi H, Kawamoto S, Okuda K. 1989, Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elstase. J. Bacteriol. 171: 1698-1704.
  13. Fuller R, Gibson GR. 1997, Modification of the intestinal microflora using probiotics and prebiotics. Scand. J. Gastroenterol. 222: 28-31.
  14. Gobbetti M, Smacchi E, Corsetti A. 1996, The proteolytic system of Lactobacillus sanfrancisco CB1: Purification and characterization of a proteinase, a dipeptidase and an aminopeptidase. Appl. Envir. Microbiol. 62: 3220-3226.
  15. Godfrey, T, Reichelt J. 1983, Industrial enzymology, The application of enzymes in industry. The Nature Press, p 127-172.
  16. Horikoshi K. 1971, Production of alkaline enzymes by alklophilic microorganisms, Part I, akaline proteinase produced by Bacillus No. 221. Agric. Biol. Chem. 35: 1407-1414. https://doi.org/10.1271/bbb1961.35.1407
  17. Hull ME. 1974, Study on milk proteins II. Colorimetric determination of the partial hydrolysis of the proteins in milk. J. Dairy Sci. 30: 881-884
  18. Impoolsup A, Bhumiratana A, Flegel TW. 1981, Isolation of alkaline and neutral protease from Aspergillus flavus var, columnaris, a soy sauce Koji mold. Appl. Environ. Microbiol. 42: 619-628.
  19. Kim HS, Whang KY. 2000, Nutritional value of soybean meal on non-ruminant feed. Korean Soy. Digest. 17: 40-54.
  20. Kim KP, Kim NH, Rhee CH, Woo CJ, Bae DH. 2002, Isolation and characterization of protease producing bacteria from soil. J. Kor. Soc. Food. Sci. Nutr. 31: 754-759. https://doi.org/10.3746/jkfn.2002.31.5.754
  21. Korhary MH, Kreger AS. 1985, Production and partial characterization of an elastorytic protease of Vibrio vulnificus. Infect. Immum. 50: 534-540.
  22. Lee CH, Park HD. 1999, Isolation and characterization of lactic acid bacteria producing antimutagenic substance from Korean KimChi. Kor. J. Appl. Microbiol. Biotechnol. 27: 15-22.
  23. Lee JS, Kwon SJ, Chung SW, Choi YJ, Yoo JY, Chung DH. 1996, Changes microorganism enzyme activities and major component during the fermentation of Korean traditional Doenjang and Kochujang. Korean J. Appl. Microbiol. Biotechnol. 24: 247-253.
  24. Lee YK, Kim JH, Oh MK, Shin SY, Choi KC, Rhee YH. 1999, Selection and physico-chemical characteristics of lactic acid bacteria which had cholesterol lowering Activities. J. Kor. Soc. Agric. Chem. Biotechnol. 42: 83-90.
  25. Lim SI, Kim HK, Yoo JY. 2006, Characteristics of protease produced by Bacillus subtilis PCA 20 -3 isolated from Korean traditional Meju. Kor. J. Food. Sci.Technol. 32: 154-160.
  26. Maeng LJ, Kim JS, Ji GE, Kim JH. 1997, Isolation of bacteriocinproducing lactic acid bacteria from human intestines and the characteristics of their bacteriocins. J. Kor. Soc. Food. Sci. Nutr. 28: 1228-1236.
  27. Messina M. 1995, Modern applications for an ancient bean: soybeans and the prevention and treatment of chronic disease. J. Nutr. 125: 567.
  28. Meussdoerffer, F., Tortora, P. and Holzer, H. (1980) Purification and properties A from yeast. J. Biological. Chem. 255, 12087-12093.
  29. Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M. 2003, Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Envir. Microbiol. 69: 5297- 5306. https://doi.org/10.1128/AEM.69.9.5297-5305.2003
  30. Mistuoka T. 1990, Bifidobacteria and their role in human health. J. Ind. Microbiol. 6: 263-268. https://doi.org/10.1007/BF01575871
  31. Mizusawa K, Ichishima E, Yoshida F. 1964, Studies on the proteolytic enzymes of thermophilic Streptomyces. Agric. Biol. Chem. 28: 884- 895. https://doi.org/10.1271/bbb1961.28.884
  32. Nakanishi T, Matsumura Y, Minamura N, Miniura N, Yamamoto T. 1974, Purification and some properties of an alkalophilic aroteinase of a Streptomyces sp.. Agric. Bio. Chem. 38: 37-44. https://doi.org/10.1271/bbb1961.38.37
  33. Park CS, Min DK, Ahn YS, Lee JH, Hong, SK, Kim JH, Kang DK. 2002, Isolation and characterization of soy protein-degrading strain, Bacillus subtilis EB464. Kor. J. Microbiol. Biotechnol. 30: 210-215.
  34. Park HS. 1987, Soybean meal production and the use in animal feeding. Kor. J. Soybean Digest, 4: 20-26.
  35. Park KY. 2002, Korean traditional food their anticancer effects. Kor. Soc. Plant. People Environ. 5: 41-45.
  36. Peckman EV. 1951, Aspergillus protease. Biochemistry. 5: 321-325.
  37. Rhden AC, Lindberg M, Philipson L. 1973, Isolation and characterization of two protease - producing mutants from staphylococcus aureus. J. Bacteriol. 116: 25-32.
  38. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. 1998, Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Rev., 62: 597-635.
  39. Rattray FP, Bockelmann W, Fox PE. 1995, Purification and characterization of an extracellular proteinase from Brevibacterium linens ATCC9174. Appl. Environ. Microbiol. 61: 3454-3456.
  40. Sneth PHA, Mair NS, Elisabeth SM, Holt JG. 1994, Bergy's Manual of Systematic Bacteriology. 9th ed.
  41. Thompson JD, Higgins DG, Gibson TJ. 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalies and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  42. Valasaki K, Staikou A, Theodorou LG, Charamopoulou V, Zacharaki P, Papamichael EM. 2008, Purification and kinetics of two novel thermophilic extracellular proteases from Lactobacillus helveticus from kefir with possible biotechnological interest. Bioresour. Technol. 99: 5804-5813. https://doi.org/10.1016/j.biortech.2007.10.018
  43. Wallace RJ. 1985, Absorption of soluble proteins to rumen bacteria and the roie of absorption in proteolysis. Br. J. Nutr. 53: 326.
  44. Wang RC, Sing RC, Law CW. 2005, Protease production and conidiation by Aspergillus oryzae in flour fermentation. Process Biochem. 40: 217-227. https://doi.org/10.1016/j.procbio.2003.12.008
  45. Yoon JH, Lee ST, Park YH. 1996, Inter-and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194.
  46. You SJ, Cho JK, Hwang SG, Heo KC. 2005, Probiotic characteristics of Lactobacillus rhamnosus isolated from kefir. Korean J. Food. Sci. Ani. Resour. 25: 357-364.
  47. Yu MH, Im HG, Im NK, Hwang EY, Choi JH, Lee EJ, Kim JB, Lee IS, Seo HJ. 2009, Anti-hypertensive activities of Lactobacillus isolated from Kimchi. Kor. J. Food. Sci. Technol. 41: 428-434.