• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 963, Processing Time 0.026 seconds

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Effect of Platycodon grandiflorum Fermentation with Salt on Fermentation Characteristics, Microbial Change and Anti-obesity Activity (소금 첨가에 따른 도라지 발효 특성과 미생물 변화 및 항비만 효능 평가)

  • Shin, Na Rae;Lim, Sokyoung;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2018
  • Objectives: This study investigated the effect on microbial ecology, fermentation characteristics and anti-obesity of Platycodon grandiflorum (PG) fermentation with salt. Methods: PG was fermented for four weeks with 2.5% salt and the characteristics of fermented PG were performed by measuring pH, total sugar content, viable bacteria number and microbial profiling. Also, we measured total polyphenol, flavonoid and the percent of inhibition of lipase activity and lipid accumulation. Results: Salt added to PG for fermentation had an effect on pH, total sugar, total and the number of lactic acid bacteria. Total sugar and pH were reduced and number of total and lactic acid bacteria were increased after fermentation. The majority of bacteria for fermentation were Lactobacillus plantarum, Leuconostoc psedomesenteroides and Lactococcus lactis subspecies lactis regardless of salt addition. However, microbial compositions were altered by added salt and additional bacteria including Weissella koreensis, W. viridescens, Lactobacillus sakei and Lactobacillus cuvatus were found in fermented PG with salt. Total flavonoid was increased in fermented PG and lipid accumulation on HepG2 cells treated with fermented PG was reduced regardless of salt addition. Moreover, fermented PG without salt suppressed lipase activity. Conclusions: Addition of salt for PG fermentation had influence on fermentation characteristics including pH and sugar content as well as number of bacteria and microbial composition. In addition, fermented PG showed anti-obesity effect by increasing flavonoid content and inhibition of lipase activity and lipid accumulation.

Properties of the Mixed Fermentation Milk Added with Red Ginseng Extract (홍삼 추출물 첨가 혼합 발효유의 특성)

  • Bae Hyoung-Churl;Nam Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • This experiment was carried out to examine the fermentation properties of yogurt with bovine milk and soybean milk at the mixed ratio of 2:1 and added 0.1, 0.2, 0.4 and 1.0% red ginseng extract. The effect on promoting the fermentation by additives 0.1, 0.2, 0.4 and 1.0% red ginseng extracts were higher and pH was $3.90{\sim}3.94$ when Lactobacillus acidophilus KCTC3150 and Lactobacillus salivarius ssp. salivarius CNU27 were used. Titratable acidity showed a little inhibiting due to increasing red ginseng extract content. The average viable counts of lactic acid bacteria after 15 hour culture was the highest level of $6.26{\times}10^8cfu/mL$ when Lactobacillus acidophilus KCTC3150 was used, and the additives content of red ginseng extract was 1.0% The production of lactic acid was the highest and the concentration was 332.22 mM when Lactobacillus acidophilus KCTC3150 was used, and the additives content of red ginseng extracts was 1.0% Lactose hydrolysis was completely hydrolyzed when Lactobacillus acidophilus KCTC3150 and Lactobacillus salivarius ssp. salivarius CNU27 were used. The highest viscosity of yogurt was 780 cP when Lactobacillus acidophilus KCTC3150 and Lactobacillus salivarius subsp. salivarius CNU27 were used and red ginseng extract was added 1.0% The overall acceptability, $4.17{\pm}0.64$, was the highest when Lactobacillus salivarius subsp. salivarius CNU27 was used and the additives content of red ginseng extract was 0.2%.

Identification of Lactic Acid Bacteria and Changes of Organic Acid during Aging of Traditional Kyungsando Squid sikhe (경상도 전통 마른 오징어 식해로부터 젖산균의 분리, 동정 및 숙성과정 중 유기산의 변화)

  • Lee, Hee-Duck;Choi, Hee-Jin;Kim, Sung;Seong, Tae-Su;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.167-172
    • /
    • 2001
  • The objective of this study is to investigate identification of lactic acid bacteria and changes of organic acid during aging of traditional Kyungsando Squid sikhe. Lactobacillus brevis SH-1, Lactobacillus plantarum SH-2, and Leuconostoc mensenteroides SH-3, which were isolated from Kyungsando Squid sikhe were selected for fermentation. The viable cell and lactic acid bacteria counts of squid sikhe was increased on fermentation days, and slowly decreased after 10 days of fermentation. The viable cell and lactic acid bacteria counts of standard sikhe at 6 days fermentation was $3.7{\times}10^9$ and $8.2{\times}10^8\;CFU/g$, respectively. The organic acid of squid sikhe consisted of 7 kinds including lactic acid during fermentation. The contents of citric acid, succinic acid, and lactic acid gradually increased during fermentation, and especially, increasing of lactic acid remarkably increased than the different organic acid. The contents of acetic acid and tartaric acid slowly increased after 7 days of fermentation.

  • PDF

Changes of Lectin from Viscum coloratum by Fermentation with Lactobacillus plantarum : Effect of pH and Temperature, Suger Specificity and Lymphocyte Stimulting Activity (유산균 발효에 의한 겨우사리 중의 렉틴 성분의 변화 : pH, 온도의 영향, 당 특이성, 림프구 자극분열효과)

  • 박원봉;김희숙;나혜복;함승시
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.24-30
    • /
    • 1995
  • Lectin from mistletoe(Viscum coloratum) fermented by Lactobacillus plantarum was compared with the lectin from unfermented mistletoe. Agglunating activity of fermented mistletoe was stable at pH 3.77~8.71, at temperature range of $0~40^{\circ}C$ and in the presence of 9 mental ions, which results are similar to unfermented one, but less stable at pH 2.03~3.00 and more stable at temperature $60~80^{\circ}C$ than lectin from unfermented one. Agglunating activity of lectin from mistletoe fermented for 1 or 2 days and from fraction number 42~54 was not inhibited by all sugars used except for lectin from fraction number 21~34. Mitogenic activity to murine lymphpocytes of lectin from mistletoe was decreased by fermentation process.

  • PDF

The Investigation of Chitosanoligosaccharide for Prolongating Fermentation Period of Kimchi (김치의 숙성 및 보존 기간 연장을 위한 키토산올리고당의 응용)

  • 최명락;유은정;임현수;김진만;송상호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.869-874
    • /
    • 1998
  • The effect of chitosanoligosaccharide(CTO) on kimchi fermentation was investigated to see the optimal CTO concentration adding into Kimchi. Lactobacillus plantarum and Leuconostoc mesenteroides were cultured in flasks under the condition of various CTO concentrations. In the case of Lactobacillus plantarium, the growth was inhibited in the degree with 52, 79 and 100% at the concentration of 0.005, 0.007, 0.05% CTO after 14 hours culture, respectively. The growth of Leuconostoc mesenteroides was significantly inhibited in the degree with 7,33 and 90% at the concentration of 0.002, 0.003 and 0.004% CTO after the culture, respectively. Kimchi was formulated with variious CTO concentrations(0.005~0.2%) and fermented at 2$0^{\circ}C$ during 12 days. The fermentation periods were increased 2~6 times more than that of control(0% CTO). Also, off-flavour by adding CTO was insignificant in all the kimchi samples.

  • PDF

Fermentation Aspects of Fruit-Vegetable Juice by Mixed Cultures of Lactic Acid Bacteria Isolated from Kimchi and Yeast (김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙의 발효양상)

  • 최홍식;김현영;여경목;김복남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1059-1064
    • /
    • 1998
  • Fermented beverage using lactic acid bacteria isolated from kimchi was investigated. Lactic acid bacteria KL 1, KD 6, KL 4 strains from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for single and mixed culture fermentation. During the fermentation by bacterial strain and yeast for 1~3 days at 30oC, various fermentation behaviors were observed. The growth rate of mixed culture of KL 1 and yeast was higher than that of single culture by KL 1 alone during the fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 day) or 0.58%(1 day) and with the final pH of 3.3(3 day) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. Among several bacterial strains, KL 1 was suitable for the mixed culture fermentation with yeast in terms of desirable fermentation behavior and organoleptical quality. The selected strain, KL 1 was identified as Leuconostoc spp. through the series of tests on carbohydrate fermentation and biochemical characteristics.

  • PDF

Functional Properties of Squid By-products Fermented by Probiotic Bacteria

  • Xu, Hua;Gou, Jingyu;Choi, Geun-Pyo;Lee, Hyeon-Yong;Ahn, Ju-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.761-765
    • /
    • 2009
  • The effects of probiotic bacteria on the functional properties of squid by-products were investigated during fermentation. Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus rhamnosus, and Pediococcus acidilactici were used to ferment the squid by-products for 96 hr at $37^{\circ}C$. The numbers of all probiotics increased to $10^7-10^8$ CFU/g after 96 hr fermentation. No substantial pH changes were observed. L. rhamnosus and P. acidilactici showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities. Interleukin-6 (IL-6) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) secreted from B cells increased after adding the extracts of probiotic-fermented squid by-products. The human NK cells were grown well in the B cell-growing broth cultured with the extracts of squid by-products fermented by L. rhamnosus and P. acidilactici. Trimethylamine (TMA) and dimethylamine (DMA) contents were significantly decreased after probiotic-fermentation. Therefore, L. rhamnosus GG and P. acidilactici can be used for the fermentation of squid by-products and their use would provide benefits in functional food products.

Isolation and Properties of Bacteriocin-producing Microorganisms (Bacteriocin 생산균주의 분리 및 성질)

  • 유진영;이이선;남영중;정건섭
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.8-13
    • /
    • 1991
  • Bacteriocin-producing microorganisms were screened from raw milk and tested their antimicrobial activities against Lactobacillus plantarum ATCC 8014 as target organism, Antimicrobial substances isolated showed broad antimicrobial spectra against Gram positives and negatives. Strain 1112-1 was selected as a test organism due to its highest antimicrobial activity among the isolates. Antimicrobial substance produced by 1112-1 completely suppressed the growth of Lactobacillus plantarum at 230 IUIml and showed 11% growth inhibition of E. coli at 500 IUIrnl level. The antimicrobial substance was found to be proteinaceous material which was inactivated by carboxypeptidase, elastase, alpha amylase, amyloglucosidase, pronase, protease IV, alpha chymotrypsin, ficin, cellulase, phosphatase and lipase. The molecular weight was estimated by SDS-PAGE as 5,900. The isolate 1112-1 was identified as one of the related strains of Lactococcus sp. The strain was different from Lactococcus lactis in the following characteristics: late positive in maltose and sucrose fermentation; positive in mannitol and salicin fermentation; negative in lactose fermentation.

  • PDF

Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2

  • Wee Young-Jung;Kim Jin-Nam;Yun Jong-Sun;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2005
  • Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, $(NH_4)_{2}HPO_4,\;and\;MnSO_4$. The optimum pH and temperature for a batch culture of Lactobacillus sp. RKY2 was found to be 6.0 and $36^{\circ}C$, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity ($6.21\;gL^{-1}h^{-1}$) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture of Lactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.