• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 966, Processing Time 0.036 seconds

Quality and antioxidant activity of ginseng seed processed by fermentation strains

  • Lee, Myung-Hee;Lee, Young-Chul;Kim, Sung-Soo;Hong, Hee-Do;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.178-182
    • /
    • 2015
  • Background: Fermentation technology is widely used to alter the effective components of ginseng. This study was carried out to analyze the characteristics and antioxidant activity of ginseng seeds fermented by Bacillus, Lactobacillus, and Pediococcus strains. Methods: For ginseng seed fermentation, 1% of each strainwas inoculated on sterilized ginseng seeds and then incubated at $30^{\circ}C$ for 24 h in an incubator. Results: The total sugar content, acidic polysaccharides, and phenolic compounds, including p-coumaric acid, were higher in extracts of fermented ginseng seeds compared to a nonfermented control, and highest in extracts fermented with B. subtilis KFRI 1127. Fermentation led to higher antioxidant activity. The 2,2'-azine-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was higher in ginseng seeds fermented by Bacillus subtilis than by Lactobacillus and Pediococcus, but Superoxide dismutase (SOD) enzyme activity was higher in ginseng seeds fermented by Lactobacillus and Pediococcus. Conclusion: Antioxidant activities measured by ABTS and SOD were higher in fermented ginseng seeds compared to nonfermented ginseng seeds. These results may contribute to improving the antioxidant activity and quality of ginseng subjected to fermentation treatments.

Physicochemical Properties and Antioxidative Activity of Fermented Rhodiola sachalinensis and Korean Red Ginseng Mixture by Lactobacillus acidophilus (Lactobacillus acidophilus을 이용한 홍경천과 홍삼 혼합 발효물의 이화학적 특성 및 항산화 활성)

  • Sung, Su-Kyung;Rhee, Young-Kyung;Cho, Chang-Won;Kim, Young-Chan;Lee, OK-Hwan;Hong, Hee-Do
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • The study was conducted to investigate the condition for mixed fermentation of Rhodilola sachalinensis with red ginseng using Lactobacillus acidophillus 128 and the changes of physicochemical properties and antioxidant activities before and after the lactic acid fermentation was examined. In the single fermentation of Rhodiola sachalinensis extract, the pH and titratable acidity rarely changed, and the number of lactic acid bacteria decreased greatly. On the other hand, in the lactic acid fermentation of Rhodiola sachalinensis-red ginseng mixed extract of 50% red ginseng content, the pH decreased, whereas the titratable acidity and the number of lactic acid bacteria increased. The solid content of optimal mixed extract for lactic acid fermentation was 0.5%. Sugar content decreased during fermentation, but total phenolic compounds tended to increase during fermentation. The salidroside and p-tyrosol content of the initial Rhodiola sachalinensis-red ginseng mixed extract was 419.5 mg% and 60.1 mg%, respectively; after fermentation, the salidroside content after lactic acid fermentation decreased greatly to 81.8 mg%, and the amount of p-tyrosol increased greatly to 324.9 mg%. The DPPH scavenging activity of Rhodiola sachalinensis-red ginseng mixed fermentate was 78.1% at 0.1% concentration, showing a tendency to increase as compared to 50.3% of Rhodiola sachalinensis-red ginseng mixed extract before the fermentation (p<0.05); it was a higher antioxidant activity as compared to the single fermentation of Rhodiola sachalinensis or red ginseng.

A Non-yeast Kefir-like Fermented Milk Development with Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6

  • Lee, Bomee;Yong, Cheng-Chung;Yi, Hae-Chang;Kim, Saehun;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.541-550
    • /
    • 2020
  • The use of yeast assist kefir fermentation, but also can cause food spoilage if uncontrolled. Hence, in this study, the microbial composition of an existing commercial kefir starter was modified to produce a functional starter, where Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6 were used to replace yeast in the original starter to produce non-yeast kefir-like fermented milk. The functional starter containing L. acidophilus KCNU and L. brevis Bmb6 demonstrated excellent stability with 1010 CFU/g of total viable cells throughout the 12 weeks low-temperature storage. The newly developed functional starter also displayed a similar fermentation efficacy as the yeast-containing control starter, by completing the milk fermentation within 12 h, with a comparable total number of viable cells (108 CFU/mL) in the final products, as in control. Sensory evaluation revealed that the functional starter-fermented milk highly resembled the flavor of the control kefir, with enhanced sourness. Furthermore, oral administration of functional starter-fermented milk significantly improved the disease activity index score by preventing drastic weight-loss and further deterioration of disease symptoms in DSS-induced mice. Altogether, L. acidophilus KCNU and L. brevis Bmb6 have successfully replaced yeast in a commercial starter pack to produce a kefir-like fermented milk beverage with additional health benefits. The outcome of this study provides an insight that the specific role of yeast in the fermentation process could be replaced with suitable probiotic candidates.

Isolation and Identification of Major Microbial Groups during Baikkimchi Fermentation (백김치 발효중 주요 미생물 군집의 분리 및 동정)

  • 소명환;김영배
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.350-359
    • /
    • 1997
  • The changes in pH, acid contents and microbial counts were investigated during fermentation of Baikkimchi, a kind of Kimchi without red pepper, and the major microbial groups were also isolated and identified. Immediately after the preparation of Baikkimchi(pH 6.15, acid contents 0.03%), its major microbial group was Gram negative rods, and was composed of Pseudomonas(55%), Enterobacter(40%) and Erwinia(5%). After 2 days of fermentation at 15$^{\circ}C$, the most predominant microbial group was changed to lactic acid bacteria. Lactic acid bacteria showed 1st, 2nd and 3rd stationary phase on its growth curve in 4, 12 and 50 days of fermentation, respectively. At the 2nd stationary phase of lactic acid bacteria(pH 3.51, acid contents 0.59%), the group was composed of Lactobacillus bavaricus(55%), Leuconostoc mesenteroides subsp. mesenteroides(42.5%) and Leuconostoc paramesenteroides(2.5%), while at the 3rd stationary phase(pH 3.40, acid contents 1.10%), that was Lactobacillus plantarum(65%) and Lactobacillus brevis(35%). The physiological and biochemical characteristics identified as Leuconostoc mesenteroides subsp. mesenteroides, Leuconostoc paramesenteroides, Lactobacillus plantarum and Lactobacillus brevis showed good agreement with the current taxonomic system, but those identified as Lactobacillus bavaricus showed some disagreements. The number of yeast was decreased wit the increase in the number of lactic acid bacteria. Yeast showed stationary phase in 30 days between the 2nd and 3rd stationary phase of lactic acid bacteria, and the group was composed of only gunus Saccharomyces.

  • PDF

Physiological Functionality of Fermented Pear Fruitlet Product Made by Mixed Fermentation of Saccharomyces cerevisiae, Kluyveromyces fragilis and Lactobacillus plantarum (Saccharomyces cerevisiae와 Kluyveromyces fragilis 및 Lactobacillus plantarum의 혼합발효로 제조한 배 유과 발효제품의 생리기능성)

  • Jang, In-Taek;Kim, Young-Hun;Na, Kwang-Chul;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • To develop the functional pear fruitlet product, we prepared fermented pear fruitlet product (FPFP) from mixed fermentation of Saccharomyces cerevisiae, Kluyveromyces fragilis and Lactobacillus plantarum. Then, we investigated their several physiological functionalities. Among several physiological functionalities, antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity of the FPFP was the highest of 87.4% and its antioxidant activity was also showed 69.6%. FPFP from mixed fermentation by yeasts and Lactobacillus plantarum after thawing of frozen pear at $20^{\circ}C$ showed higher physiological functionalities than those of single fermentation by Saccharomyces cerevisiae or Bacillus subtilis after $40^{\circ}C$ of thawing.

Characteristic Changes of Galgeuntang Fermented with Lactic Acid Bacteria (유산균 발효에 의한 갈근탕의 특성변화 분석)

  • Rhee, Young-Kyoung;Kim, Mi-Hyun;Lee, Young-Chul;Rho, Jeong-Hae;Ma, Jin-Yeul;Cho, Chang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.655-658
    • /
    • 2011
  • The possible application of Lactobacillus spp. as a functional starter culture to ferment galgeuntang (GT) and to produce bioactive isoflavone (daidzein) was investigated. Lactobacillus casei KFRI 127, L. plantarum KFRI 144, L. bulgaricus KFRI 344 were used for GT fermentation. Acid development and quantification of isoflavones using high-performance liquid chromatography were performed after fermentation at 37$^{\circ}C$ for 48 h. All the tested Lactobacillus spp. lowered pH to about 3.8 in 48 h and L. plantarum KFRI 144 exhibited 89.9% hydrolysis rate of daidzin (79.1-8.0 ${\mu}g$/mL) during fermentation. The content of daidzein in GT fermented with L. plantarum KFRI 144 was increased by 6.6-fold (3.6-23.9 ${\mu}g/mL$). These results demonstrate that L. plantarum KFRI 144 has potential as functional starter culture for manufacturing fermented GT with higher isoflavone bioavailability.

Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage

  • Huang, Kailang;Chen, Hongwei;Liu, Yalu;Hong, Qihua;Yang, Bin;Wang, Jiakun
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1379-1389
    • /
    • 2022
  • Objective: This study identified the major lactic acid bacteria (LAB) strains from different fermented total mixed rations (FTMRs) via metataxonomic analysis and evaluated the ability of their standard strain as ensiling inoculants for corn stover silage. Methods: The bacterial composition of eight FTMRs were analyzed by 16S rDNA sequencing. Corn stover was ensiled without LAB inoculation (control) or with 1×106 cfu/g LAB standard strain (Lactobacillus vaginalis, Lactobacillus reuteri, Lactobacillus helveticus, or Lactobacillus paralimentarius) selected from the FTMRs or 10 g/t commercial silage inoculant (CSI) around 25℃ for 56 days. For each inoculation, a portion of the silage was sampled to analyze ensiling characteristics at time intervals of 0, 1, 3, 7, 14, 28, and 56 days, gas production (GP), microbial crude protein and volatile fatty acids as the measurements of rumen fermentation characteristics were evaluated in vitro with the silages of 56 days after 72 h incubation. Results: Lactobacillus covered >85% relative abundance of all FTMRs, in which L. pontis, L. vaginalis, L. reuteri, L. helveticus, and L. paralimentarius showed >4% in specific FTMRs. CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. Silage inoculated with L. paralimentarius and CSI produced more lactic acid the early 14 days. Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. For the in vitro rumen fermentation, silage inoculated with CSI produced more potential GP, isobutyric acid, and isovaleric acid; silage inoculated with L. helveticus produced more potential GP and isovaleric acid, silage inoculated with L. paralimentarius or L. reuteri produced more potential GP only. Conclusion: The standard strain L. paralimentarius (DSM 13238) is a promising ensiling inoculant for corn stover silage. The findings provide clues on strategies to select LAB to improve the quality of silage.

Fermentation Patterns of Leek Kimchi and Chinese Cabbage Kimchi (부추김치와 배추김치 발효양상)

  • 안순철;김태강;이헌주;오윤정;이정숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.234-238
    • /
    • 2001
  • For the comparison of fermentation pattern of leek kimci with chinese cabbage kimchi, the changes of total viable cell number, Leuconostoc sp. bacteria, Lactobacillus sp. bacteria, pH and total sugar content of twotypes kimchies were investigated during fermentation at $20^{\circ}C$ and $10^{\circ}C$. In chinese cabbage kimchi at $20^{\circ}C$ fermentaion, the numbers of total viable cell, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria reachedthe maximum level on 2nd day and reduced slowly. But in leek kimchi, the maximum numbers of total via-ble cells, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria were obtained after 3 days fermentation,and the cell number of Lactobacillus sp. maintained at the maximum level oyer 15 days. At $10^{\circ}C$ fer-mentation, in both kimchies, the viable cell number of lactic acid bacteria more slowly increased anddecreased than at $20^{\circ}C$. The pH of chinese cabbage kimchi was 4.2 on 3rd day (optimal ripening phase) andmere decreased to 3.5 after 5 days, but in leek kimci the pH 4.2 could be reached after 10 days at $20^{\circ}C$. At $10^{\circ}C$, the optimal ripening pH 4.2 of chinese cabbage kimchi was reached after 6 days, but in leek kimchieven though after 24 days, the pH was maintained oyer 4.3. The total sugar contents of chinese cabbage him-chi and leek kimci were decreased continuously during fermentation. From these results, we know that thefermentation of leek kimchi proceed more slowly than chinese cabbage kimchi by the retardation of lacticacid bacteria growing in leek kimchi.

  • PDF

Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria (각종 혐기성 미생물 발효에 의한 유기산 및 수소생산)

  • Kim, Mi-Sun;Yoon, Y.S.;Sim, S.J.;Park, T.H.;Lee, J.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

Effect of Starter on the Fermentation of Kimchi (Starter 첨가가 김치의 숙성에 미치는 효과)

  • Lee, Shin-Ho;Kim, Soon-Doog
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.4
    • /
    • pp.342-347
    • /
    • 1988
  • This studies were carried out to investigated the effects of starter on the fermentation of Kimchi. The organisms isolated from Kimchi, Lactobacillus plantarum, Lactobacillus brevis, Pediococcus cerevisiae and Leuconostoc mesenteroides, were used as starter for preparation of Kimchi. The fermentation of starter inoculated Kimchi was enhanced compared with that of starter not inoculated Kimchi at $25^{\circ}C$. The mixed strain was more effective than single strain on the fermentation Kimchi. The fermentation of starter incoculated Kimchi was enhanced by addition of red pepper, whereas inhibited during first days by addition of Singer. The fermentation period of starter inoculated Kimchi was shortened about 24hours compared with that of starter not inoculated Kimchi at $25^{\circ}C$. The sensory score of starter inoculated Kimchi was better than that of starter not inoculated Kimchi in odor, flavor and overall acceptability. The effect of starter was significant in odor of Kimchi.

  • PDF