DOI QR코드

DOI QR Code

Characteristic Changes of Galgeuntang Fermented with Lactic Acid Bacteria

유산균 발효에 의한 갈근탕의 특성변화 분석

  • Rhee, Young-Kyoung (Research Division for Food Industry Advancement, Korea Food Research Institute) ;
  • Kim, Mi-Hyun (Research Division for Food Industry Advancement, Korea Food Research Institute) ;
  • Lee, Young-Chul (Research Division for Food Industry Advancement, Korea Food Research Institute) ;
  • Rho, Jeong-Hae (Research Division for Food Industry Advancement, Korea Food Research Institute) ;
  • Ma, Jin-Yeul (TKM Integrated Research Division, Korea Institute of Oriental Medicines) ;
  • Cho, Chang-Won (Research Division for Food Industry Advancement, Korea Food Research Institute)
  • 이영경 (한국식품연구원 산업진흥연구본부) ;
  • 김미현 (한국식품연구원 산업진흥연구본부) ;
  • 이영철 (한국식품연구원 산업진흥연구본부) ;
  • 노정해 (한국식품연구원 산업진흥연구본부) ;
  • 마진열 (한국한의학연구원 한의융합연구본부) ;
  • 조장원 (한국식품연구원 산업진흥연구본부)
  • Received : 2011.05.02
  • Accepted : 2011.07.12
  • Published : 2011.10.31

Abstract

The possible application of Lactobacillus spp. as a functional starter culture to ferment galgeuntang (GT) and to produce bioactive isoflavone (daidzein) was investigated. Lactobacillus casei KFRI 127, L. plantarum KFRI 144, L. bulgaricus KFRI 344 were used for GT fermentation. Acid development and quantification of isoflavones using high-performance liquid chromatography were performed after fermentation at 37$^{\circ}C$ for 48 h. All the tested Lactobacillus spp. lowered pH to about 3.8 in 48 h and L. plantarum KFRI 144 exhibited 89.9% hydrolysis rate of daidzin (79.1-8.0 ${\mu}g$/mL) during fermentation. The content of daidzein in GT fermented with L. plantarum KFRI 144 was increased by 6.6-fold (3.6-23.9 ${\mu}g/mL$). These results demonstrate that L. plantarum KFRI 144 has potential as functional starter culture for manufacturing fermented GT with higher isoflavone bioavailability.

갈근탕을 이용한 유산균 발효에 적합한 균주를 선발하기 위하여 3종의 Lactobacillus균을 이용하여 발효시킨 갈근탕의 특성을 분석해 본 결과, 발효에 의한 유기산의 생성으로 3종의 발효 갈근탕 모두 pH가 3.8 이하로 저하되었다. 또한 각 Lactobacillus들에 의한 갈근탕의 지표물질 중 하나인 isoflavone 배당체 daidzin의 비배당화 활성을 평가한 결과 L. plantarum KFRI 144균주가 89.9%의 가수분해율을 보여 가장 높은 활성을 나타내었다. 이러한 결과로부터 L. plantarum KFRI 144균주는 갈근탕 약효성분의 생체이용률을 높일 수 있는 기능성 발효 갈근탕 제조의 starter 균주로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Ji X, Tan BK, Zhu YC, Linz W, Zhu YZ. Comparison of cardioprotective effects using ramipril and danshen for the treatment of acute myocardial infarction in rats. Life Sci. 73: 1413-1426 (2003) https://doi.org/10.1016/S0024-3205(03)00432-6
  2. Shin JM, Kim YO, Baek SH. Free radical scavenging activity and kinetic behavior of the galgeuntang water extract. Oriental Pharm. Exp. Med. 8: 32-38 (2008) https://doi.org/10.3742/OPEM.2008.8.1.032
  3. Park SY, Baek JM, Baek SH. Cytoprotective effect of galgeuntang extract on cadmium-induced cytotoxicity. Yakhak Hoeji 54: 151-156 (2010)
  4. Wang CY, Huang HY, Kuo KL, Hsieh YZ. Analysis of Puerariae radix and its medicinal preparations by capillary electrophoresis. J. Chromatogr. A 802: 225-231 (1998) https://doi.org/10.1016/S0021-9673(97)01070-4
  5. Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378 (1989) https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  6. Choi YB, Woo JG, Noh WS. Hydrolysis of $\beta$-glucosidase bonds of isoflavone conjugates in the lactic acid fermentation of soymilk. Korean J. Food Sci. Technol. 31: 189-195 (1999)
  7. Jeon KS, Ji GE, Hwang IK. Assay of $\beta$-glucosidase activity of bifidobacteria and hydrolysis of isoflavone glycosides by Bifidobacterium sp. Int-57 in soymilk fermentation. J. Microbiol. Biotechn. 12: 8-13 (2002)
  8. Murota K, Shimizu S, Miyamoto S, Izumi T, Obata A, Kikuchi M, Terao J. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: Comparison of isoflavonoids and flavonoids. J. Nutr. 132: 1956-1961 (2002)
  9. Cho YH, Imm JY, Kim HY, Hong SG, Hwang SJ, Park DJ, Oh S. Isolation and partial characterization of isoflavone transforming Lactobacillus plantarum YS712 for potential probiotic use. Korean J. Food Sci. An. Resour. 29: 640-646 (2009) https://doi.org/10.5851/kosfa.2009.29.5.640
  10. Um YR, Lee JH, Lee JH, Moon HJ, Park HY, Cho CW, Ma JY. Acute toxicity study on fermented ojeoksan (wujisan) extract in mice. J. Oriental Obstet. Gynecol. 22: 19-27 (2009)
  11. Jung YJ, Han DO, Choi BH, Park C, Lee H, Kim SH, Hahm DH. Effect of fermented herbal extracts, HP-1 on enzyme activities and gene expressions related to alcohol metabolism in ethanol- loaded rats. Korean J. Oriental Physiol. Pathol. 21: 387-391 (2007)
  12. Lee JH, Lee JH, Ma CJ, Ma JY. Single dose toxicity study on galgeuntang in mice. Korean J. Oriental Med. 15: 79-83(2009)
  13. Wang G, Kuan SS, Francis OJ, Ware GM, Carman AS. A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. J. Agr. Food Chem. 38: 185- 190 (1990) https://doi.org/10.1021/jf00091a041
  14. Pyo YH, Lee TC, Lee YC. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: S215-S220 (2005)
  15. Eum HA, Lee JH, Yang MC, Shim KS, Lee JH, Ma JY. Protective effect of ssanghwa-tang fermented by Lactobacillus fermentum against carbon tetrachloride-induced acute hepatotoxicity in rats. Afr. J. Tradit. Complement. Altern. Med. 8: 312-321 (2011)
  16. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 27: 61-67 (2004) https://doi.org/10.1007/BF02980048
  17. Weon JB, Ma JY, Yang HJ, Ma CJ. Neuroprotective activity of fermented Oyaksungisan. Korean J. Pharmacogn. 42: 22-26 (2011)
  18. Masood MI, Qadir MI, Shrazi JH, Khan IU. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37: 91-98 (2011) https://doi.org/10.3109/1040841X.2010.536522
  19. Lee JY, Park YS, Kim YS, Shin DH. Antimicrobial characteristics of metabolites of lactic acid bacteria isolated from feces of newborn baby and from Dongchimi. Korean J. Food Sci. Technol. 34: 472-479 (2002)
  20. Walsh KR, Failla ML. Transport and metabolism of equol by Caco-2 human intestinal cells. J. Agr. Food Chem. 57:8297-8302 (2009) https://doi.org/10.1021/jf9011906
  21. Chien HL, Huang HY, Chou CC. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772-778 (2006) https://doi.org/10.1016/j.fm.2006.01.002
  22. Pyo YH, Lee TC, Lee YC. Enrichment of bioactive isoflavones in soymilk fermented with $\beta$-glucosidase-producing lactic acid bacteria. Food Res. Int. 38: 551-559 (2005) https://doi.org/10.1016/j.foodres.2004.11.008
  23. Kim DH. Herbal Medicinal Microbiology. HYOIL Books, Seoul, Korea. pp. 147-150 (2000)
  24. Park EK, Shin J, Bae EA, Lee YC, Kim DH. Intestinal bacteria activates estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol. Pharm. Bull. 29: 2432-2435 (2006) https://doi.org/10.1248/bpb.29.2432

Cited by

  1. Quality Characteristics and Antioxidant Activity of Espresso Coffee Prepared with Green Bean Fermented by Lactic Acid Bacteria vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1799
  2. Bioconversion of isoflavones during the fermentation of Samso-Eum with Lactobacillus strains vol.17, pp.5, 2012, https://doi.org/10.1007/s12257-012-0073-7
  3. Antioxidative Activity of Mushroom Water Extracts Fermented by Lactic Acid Bacteria vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.080