The present paper describes a new technique for associating images employing a set of local constraints among pixels on an image. The technique describes the association problem in terms of consistent labeling which is an abstraction of various kinds of network constraints problems. In this particular research, a pixel and its gray value correspond to a unit and a label, respectively. Since constraints among units on an image are defined with respect to each n-tuple of pixels, performance of the present association technique largely depends on how to choose the n-tuples on an image plane. The main part of this paper is devoted to discussing this selection scheme and giving a solution to it as well as showing the algorithm of association. Also given are some results of the simulation performed on synthetic binary images to examine the performance of proposed technique, followed by the argument on further studies.
The present study examined preschooler's (3-5yrs) representation and evaluation skills in a puzzle completion task. The puzzle contained panels of four children dressed for each seacon and the key to success was using a body scheme to reconstruct the panels (head, torso, legs, feet and sky on top). Baseline data (Study 1) revealed a developmental pattern of increasing bydy scheme representation along with more careful attention to season consitent construction. Spontaneous verbalization also shifted from more guiding statements (where'the head?) to move evaluative statements (this isn't right). Study 2 examined different intervention techniques for increasing representation (verbal laveling) and evaluative processes (error detection practice), along with a control group that had unassisted practice. Three year olds benefited from verbal labeling, four year olds from both types of training. Verbalizations also showed appropriated shifts toward increasing evaluation, particularly for the older children. These findings are discussed in terms of a developmental hypothesis that representation precedes evaluation skills and that training techniques should take into account the relative balance between representation and evaluation skills in the individual for the task at hand.
Cytotoxicity is a severe problem of cadmium sulfide nanoparticles(CSNPs) for use in biological systems. In the present study, mercaptoacetic acid-coated CSNPs were conjugated with bovine serum albumin (BSA) to improve biocompatibility. The surface properties of the CSNPs and albumin-conjugated CSNPs (ACSNPs) were characterized by XRD, UV, FTIR, EA, TEM and DLS. Human breast cancer cells (KB cells) were then cultured in the presence of the nanoparticles to evaluate the cytotoxicity of CSNPs and ACSNPs. Finally, the fluorescence intensity of the nanoparticles' aqueous solution was examined using a fluorescence spectrometer. The results showed that the cell compatibility and fluorescence intensity of ACSNPs were higher than those of CSNPs. The strongly luminescent features of the biocompatible ACSNPs are promising for use in biological fields such as cellular labeling, intracellular tracking and molecular imaging.
Presented in this paper is a scheduling method for semiconductor backend process considering the backward pegging. It is known that the pegging for frontend is a process of labeling WIP lots for target order which is specified by due date, quantity, and product specifications including customer information. As a result, it gives the release plan to meet the out target considering current WIP. However, the semiconductor backend process includes the multichip package and test operation for the product bin portion. Therefore, backward pegging method for frontend can't give the release plan for backend process in semiconductor. In this paper, we suggest backward pegging method considering the characteristics of multichip package and test operation in backend process. And we describe the backward pegging problem using the examples.
A mention has a noun or noun phrase as its head and constructs a chunk that defines any meaning, including a modifier. Mention detection refers to the extraction of mentions from a document. In mentions, coreference resolution refers to determining any mentions that have the same meaning. Pointer networks, which are models based on a recurrent neural network encoder-decoder, outputs a list of elements corresponding to an input sequence. In this paper, we propose mention detection using pointer networks. This approach can solve the problem of overlapped mention detection, which cannot be solved by a sequence labeling approach. The experimental results show that the performance of the proposed mention detection approach is F1 of 80.75%, which is 8% higher than rule-based mention detection, and the performance of the coreference resolution has a CoNLL F1 of 56.67% (mention boundary), which is 7.68% higher than coreference resolution using rule-based mention detection.
Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권10호
/
pp.4092-4107
/
2015
We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.
Deep learning based methods achieve state-of-the-art accuracy, however, they typically rely on supervised training with large labeled datasets. It is known in many medical applications that labeling medical images requires significant expertise and much time, and typical hand-tuned approaches for data augmentation fail to capture the complex variations in such images. This paper proposes a 3D image augmentation method to overcome these difficulties. It allows us to enrich diversity of training data samples that is essential in medical image segmentation tasks, thus reducing the data overfitting problem caused by the fact the scale of medical image dataset is typically smaller. Our numerical experiments demonstrate that the proposed approach provides significant improvements over state-of-the-art methods for 3D medical image segmentation.
본 논문에서는 시퀀스 레이블링 문제(sequence labeling problem)인 개체명 인식에 사용할 새로운 태깅 포맷인 Delimiter tag (D-tag)를 소개한다. 시퀀스 레이블링 문제에서 사용하는 BIO-tag 포맷은 개체명 레이블을 B (beginning)와 I (inside) 의미의 레이블로 확장하여 타겟 클래스의 수가 2배 증가한다. 또한 BIO-tag 포맷을 사용할 경우, 모델이 B와 I 를 잘못 분류하는 문제가 발생하며, 레이블 수가 많은 세부 분류 개체명의 경우에는 label confusion을 야기한다. 본 논문에서 제안한 D-tag 포맷은 타겟 클래스의 수를 증가시키지 않기 때문에 앞서 언급한 문제를 해결할 수 있다. 실험 결과, D-tag를 사용하여 학습한 모델이 BIO-tag를 사용한 경우보다 더 좋은 성능을 보여, 유망함을 확인하였다.
고령 사회에 들어선 한국은 노인 인구의 87%가 치매, 중풍 등 만성질환을 앓고 있으며 이중 알츠하이머 치매는 전체 치매의 71.3%를 차지할 정도로 치매 중 높은 비율로 나타난다. 본 논문은 알츠하이머 치매 MRI 이미지를 3단계로 나눈 딥러닝 결과의 오차 문제를 검토하기 위해 라벨링 검증을 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.