Albumin-conjugated Cadmium Sulfide Nanoparticles and their Interaction with KB Cells

  • Selim, K.M. Kamruzzaman (Department a Polymer Science, Kyungpook National University) ;
  • Kang, Inn-Kyu (Department Polymer Science, Kyungpook National University) ;
  • Guo, Haiqing (College of Chemistry and Molecular Engineering, Peking University)
  • Published : 2009.06.25

Abstract

Cytotoxicity is a severe problem of cadmium sulfide nanoparticles(CSNPs) for use in biological systems. In the present study, mercaptoacetic acid-coated CSNPs were conjugated with bovine serum albumin (BSA) to improve biocompatibility. The surface properties of the CSNPs and albumin-conjugated CSNPs (ACSNPs) were characterized by XRD, UV, FTIR, EA, TEM and DLS. Human breast cancer cells (KB cells) were then cultured in the presence of the nanoparticles to evaluate the cytotoxicity of CSNPs and ACSNPs. Finally, the fluorescence intensity of the nanoparticles' aqueous solution was examined using a fluorescence spectrometer. The results showed that the cell compatibility and fluorescence intensity of ACSNPs were higher than those of CSNPs. The strongly luminescent features of the biocompatible ACSNPs are promising for use in biological fields such as cellular labeling, intracellular tracking and molecular imaging.

Keywords

References

  1. L. Chen, J. Zhu, Q. Li, S. Chen, and Y. Wang, Eur. Polym. J., 43, 4593 (2007) https://doi.org/10.1016/j.eurpolymj.2007.08.008
  2. Z. Li, K. Wang, W. Tan, J. Li, Z. Fu, C. Ma, H. Li, X. He, and J. Liu, Anal. Biochem., 354, 169 (2006) https://doi.org/10.1016/j.ab.2006.04.029
  3. A. M. Smith, X. Gao, and S. Nie, Photochem. Photobiol., 80, 377 (2004)
  4. W. J. Parak, T. Pellegrino, and C. Plank, Nanotechnology, 16, 9 (2005) https://doi.org/10.1088/0957-4484/16/2/R01
  5. M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, Proc. Natl. Acad. Sci. USA, 99, 12617 (2002) https://doi.org/10.1073/pnas.152463399
  6. K. I. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, and K. Yamamoto, Biochem. Biophys. Res. Commun., 302, 496 (2003) https://doi.org/10.1016/S0006-291X(03)00211-0
  7. N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, Talanta, 67, 462 (2005) https://doi.org/10.1016/j.talanta.2005.06.041
  8. W. C. W. Chan and S. Nie, Science, 281, 2016 (1998) https://doi.org/10.1126/science.281.5385.2016
  9. H. M. Chen, X. F. Huang, L. Xu, J. Xu, K. J. Chen, and D. Feng, Superlatt. Microstruc., 27, 1 (2000) https://doi.org/10.1006/spmi.1999.0794
  10. G. P. Mitchell, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc., 121, 8122 (1999) https://doi.org/10.1021/ja991662v
  11. C. C. Chen, C. P. Yet, H. N. Wang, and C. Y. Chao, Langmuir, 15, 6845 (1999) https://doi.org/10.1021/la990165p
  12. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, Biomaterials, 28, 4717 (2007) https://doi.org/10.1016/j.biomaterials.2007.07.014
  13. M. J. Meziani, P. Pathak, B. A. Harruff, R. Hurezeanu, and Y. P. Sun, Langmuir, 21, 2008 (2005) https://doi.org/10.1021/la0478550
  14. S. Nayar, A. Sinha, S. Das, S. K. Das, and P. R. Rao, J. Mater. Sci. Lett., 20, 2099 (2001) https://doi.org/10.1023/A:1013707910872
  15. J. G Liang, X. P. Ai, Z. K He, H. Y Xie, and D. W Pang, Mater. Lett., 59, 2778 (2005) https://doi.org/10.1016/j.matlet.2005.04.024
  16. L. Y. Wang, Y. Y. Zhou, L. Wang, C. Q. Zhu, Y. X. Li, and F. Gao, Anal. Chem. Acta, 466, 87 (2002) https://doi.org/10.1016/S0003-2670(02)00553-6
  17. Y. C. Kuo, Q. Wang, C. Ruengruglikit, H. Yu, and Q. Huang, J. Phys. Chem. C, 112, 4818 (2008)
  18. C. Jiang, S. Xu, D. Yang, F. Zhang, and W. Wang, Luminescence, 22, 430 (2007) https://doi.org/10.1002/bio.981
  19. J. S. Bae, E. J. Seo, and I. K. Kang, Biomaterials, 20, 529 (1999) https://doi.org/10.1016/S0142-9612(98)00204-X
  20. K. S. Chow, E. Khor, and A. C. A. Wan, J. Polym. Res., 8, 27 (2001) https://doi.org/10.1007/s10965-006-0132-x
  21. N. V. Smith, X-Ray Powder Data Files, American Society for Testing and Materials, Philadelphia, 1967
  22. A. Pucci, M. Boccia, F. Galembeck, C. A. P. Leite, N. Tirelli, and G. Ruggeri, Reactive & Functional Polym., 68, 1144 (2008) https://doi.org/10.1016/j.reactfunctpolym.2008.03.007
  23. Q. Wang, Y. C. Kuo, Y. Wang, G. Shin, C. Ruengruglikit, and Q. Huang, J. Phys. Chem. B, 110, 16860 (2006) https://doi.org/10.1021/jp062279x
  24. A. L. Pan, J. G. Ma, X. Z. Yan, and B. S. Zou, J. Phys. Condens. Matter., 16, 3229 (2004) https://doi.org/10.1088/0953-8984/16/18/023
  25. L. E. Brus, J. Chem. Phys., 80, 4403 (1984) https://doi.org/10.1063/1.447218
  26. N. Zhu, A. Zhang, P. He, and Y. Fang, Analyst, 128, 260 (2003) https://doi.org/10.1039/b211987k
  27. P. S. Chowdhury, P. Ghosh, and A. Patra, J. Lumines., 124, 327 (2007) https://doi.org/10.1016/j.jlumin.2006.04.001
  28. I. K. Kang, B. K. Kwon, J. H. Lee, and H. B. Lee, Biomaterials, 14, 787 (1993) https://doi.org/10.1016/0142-9612(93)90045-4
  29. K. M. K. Selim, J. H. Lee, S. J. Kim, Z. Xing, Y. Chang, H. Guo, and I. K. Kang, Macromol. Res., 14, 646 (2006)
  30. Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, Nanotechnology, 18, 1 (2007)
  31. A. S. Blum, C. M. Soto, C. D. Wilson, J. L. Whitley, M. H. Moore, K. E. Sapsford, T. Lin, A. Chatterji, J. E. Johnson, and B. R. Ratna, Nanotechnology, 17, 5073 (2006) https://doi.org/10.1088/0957-4484/17/20/006
  32. D. Maysinger, J. Lovric, A. Eisenberg, and R. Savic, Eur. J. Pharm. Biopharm., 65, 270 (2007) https://doi.org/10.1016/j.ejpb.2006.08.011
  33. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, Nano Lett., 4, 11 (2004) https://doi.org/10.1021/nl0347334
  34. L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc., 109, 5649 (1987) https://doi.org/10.1021/ja00253a015
  35. S. K. Haram, B. M. Quinn, and A. J. Bard, J. Am. Chem. Soc., 123, 8860 (2001) https://doi.org/10.1021/ja0158206
  36. J. Lovric, S. J. Cho, F. M. Winnik, and D. Maysinger, Chem. Biol., 12, 1227 (2005) https://doi.org/10.1016/j.chembiol.2005.09.008
  37. A. C. Samia, X. Chen, and C. Burda, J. Am. Chem. Soc., 125, 15736 (2003) https://doi.org/10.1021/ja0386905
  38. M. Noble, M. Mayer-Proschel, and C. Proschel, Antioxid. Redox Signal, 7, 1456 (2005) https://doi.org/10.1089/ars.2005.7.1456
  39. C. W. Liua and H. T. Chang, Open. Anal. Chem. J., 1, 1 (2007)