• Title/Summary/Keyword: LQG

Search Result 276, Processing Time 0.022 seconds

Command to line of sight guidance loop based on LQG design (LQG 설계에 의한 시선지령 유도루우프의 구성)

  • Chang, Sang-Keun;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.567-571
    • /
    • 1992
  • A guidance loop of the missile system which uses a command to line of sight(CLOS) guidance law is designed based on LQG theory. In the environment of the severe tracking system noise, the system requires small aerodynamic control fin travel and small miss distance simultaneously. Results from a sample airframe shows good performance against a randomly maneuvering target.

  • PDF

On the loop-shaping techniques for the LQG/LTR control (LQG/LTR 제어를 위한 루프형성기법에 관한 연구)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1028-1033
    • /
    • 1992
  • Loop shaping techniques are developed for the LQG/LTR controller design of singular multivariable sytems. One approach is to use the mode form of plant and the other is to replace the eigenvalues at 0 by ones at .epsilon.(.rarw.0). These two concepts for the target filter loop design are applied to a flight autopilot. And it is shown that these techniques are effective ones for the desired loop-shaping of singular multivariable systems.

  • PDF

A Robust Output Feedback Controller Design for Uncertain Linear Systems Using LQG/LTR (LQG/LTR 기법을 이용한 불확실한 선형 시스템의 견실한 출력 되먹임 제어기의 설계)

  • Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.209-215
    • /
    • 1995
  • In this paper, a controller design method for uncertain linear systems by output feedback is proposed. This method utilizes the LQG/LTR procedure for systems with uncertainties described in the time domain. It is assumed that the uncertainties satisfy the matching conditions and their bounds are known. First, a robust state feedback controller design method is introduced. Then, it is asymtotically recovered for the output feedback system by the loop transfer recovery(LTR) method under a certain condition.

  • PDF

A Study on the LQG/LTR for Nonminimum Phase Plant (I) : Optimal Approximation Method (비 최소위상 플랜트에 대한 LQG/LTR에 관한 연구(I) : 최적 근사 방법)

  • 강진식;서병설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.972-980
    • /
    • 1991
  • LQG/LTR method have a theoretical constraint that it cannot applied to nonminimum phase plant. In this paper we suggest two methods of approximation of minimum phase plant for a given nonminimum phase plant to solve this constraint. Error is described by additive form which can reduce its magnitude in broad frequency range. A optimal approximation method was suggested by using Hankel operator theory and Nehan theory it is shown by example that the methods suggested can resolve the frequency domain constraint arised in Stein and Athans approximation.

  • PDF

LQG/LTR METHODS FOR LINEAR SYSTEMS WITH DELAYS IN STATE AND CONTROL (상태 및 입력변수에 시간지연이 있는 시스템을 위한 LQG/LTR 방법)

  • Lee, Sang-Jeong;Gwon, Uk-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.139-143
    • /
    • 1987
  • In this paper, the stability margins of LQ regulators for the systems with delays in both state and control are analyzed and represented explicitly in terms of system parameters when the systems are open-loop stable. And, the LQG/LTR method is considered as a robust control design method. The results in this paper generalize the well-known ones for ordinary systems.

  • PDF

LPG/LTR Method for Output-Delayed System (출력 시가 지연 시스템의 LQG/LTR 방법)

  • 이상정;홍석민
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.827-837
    • /
    • 1994
  • This paper presents robustness propertis of the Kalman Fiter and the associated LQG/LTR method for linear time-invariant output-delayed systems. It is shown that, even for minimum phase plants, the LQG/LTR method can not recover the target loop transfer function. Instead, an upper bound on the recovery error is obtained using an upper bound of the solution of the Kalman filter Riccati equations. Finally, some dual properties between output-delayed systems and input-delayed systems are exploited.

  • PDF

Linear-Quadratic-Gaussian Regulators with Moving Horizons (가변경계조건을 갖는 새로운 칼만필터 및 레규레이터 구성)

  • Kwon, W.H.;Park, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.80-82
    • /
    • 1979
  • While the standard linear-quadratic-Gaussian problem has fixed horizons, this paper considers the LQG problem with moving horizons. By the separation principle the solution will be given by the kalman filter with the approaching horizon and the LQ regulator with the receding horizon. Sufficient conditions on weighting matrices are derived under which the filter and regulator are asymptotically stable. It wall be shown that the computation method of the moving-horizon LQG regulators is better than that of the standard LQG regulator. The performance measure between the two optimal controls will be compared. A simulation result is given in order to show the usefulness of the moving-horizon LQG regulator.s

  • PDF

Control System Design for the Focus Servo System of DVD Drive (DVD 드라이브의 포커스 서보 시스템 제어기 설계)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper, two plant models, of which one is newly developed and the other one is the conventional one, of the focus servo system of DVD drive are presented and a two-degree-of freedom controller consisted of Inverse dynamics feedforward and LQG/LTR feedback controller is designed. The newly developed plant model is used to design the feedforward controller and the conventional model is used for the design of feedback controller. The output of newly developed model is the displacement of objective lens and the output of conventional model is the focus error of the DVD focus servo system. The displacement of the objective lens is estimated by the dynamics model of the DVD focus servo system. The disturbance rejection performance of the two-degree-of freedom controller is compared with that of an LQG/LTR one.

  • PDF

LQG Controller Design for Active Suspensions using Evolution Strategy and Neural Network (진화전략과 신경회로망을 이용한 능동 현가장치 LQG 제어기 설계)

  • Cheon, Jong-Min;Kim, Jong-Moon;Park, Min-Kook;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.266-268
    • /
    • 2006
  • In this paper, we design a Linear Quadratic Gaussian(LQG) controller for active suspensions. We can improve the inherent suspension problem, trade-off between the ride quality and the suspension travel by selecting appropriate weights in the LQ-objective function. Using an optimization-algorithm, Evolution Strategy(ES), we find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle's state variables. The frequencies and proper control gains are used for the neural network data. During a vehicle running, the trained on-line neural network is activated and provides the proper gains for non-trained frequencies.

  • PDF

Vibration Contol of Automotive Suspension System using the LQG/LTR Control Methodology (LQG/LTR제어기법을 이용한 자동차 서스펜션 시스템의 진동제어)

  • Ahn, Jeong-Keun;Song, Chang-Hun;Yoo, Sam-Hyeon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.646-653
    • /
    • 2001
  • LQG/LTR Control Methology is recently used for the analysis of multi-variable control in frequency domain. Target filter loop is designed by the demanding requirements such as cross-over frequency, disturbance rejection in low frequency domain, zero steady-state error, identification of maximum and minimum singular values and sensor noise rejection in high frequency domain. Loop transfer recovery is accomplished by solving the cheap control and then simulation close to the target filter loop. In this study, LQG/LTR Control Methodology is applied to the seat suspension system. It is found that this technique is very effective to control the system and improve the ride quality of human body.

  • PDF