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While the standard iivear-quadratic-saussian problem has fixed borizers, this paver
considers the LQG problex with mbving horizans. By the seperaticn principle the solution
will be given by the Kalman filter with the approaching horizon and the L regulator with
the receding horizen. Suffisisnt conditions on weighting matrices are derived under which
the filter and regulator are asymptotically stable. It will be shown that the computation
wetiiod of the moving-horizon LOG regulator is better than that of the stendard LOG regu-
fatur. The performance measure between the twe optimal ‘contrals will be compared. A simo-
Iziion result is given in order to show the usefulness of the moving-horizon' LQG regulator.

I. Introduction

It has been understoad that linear feedback systems require following properties among
cthers;(i)‘ the feedback system must be stable. TFeedback gains must be defined for all

¢ {t ,e) for stability amalysis.{ii) the feedback gain could be time-varying, but it
‘JST bé time-invariant for time-invariant systems.(iii) computation of feedback gains must
pe easy.{iv) the system must have robustpess with respect to perturbations.(v) the output
. Feedback is prefersble to the state feedback.

The above requirements can partially be achieveé by the linear quadratlc( 10} optimal
control{#],whose steady state solution satisfies (i), {(ii}, and (iv), and also by the
linear-quadratic-Gaussian(LQG) stochastic oprimel control  ipvestigated by Kalman and Bucy[:],
vwhose steady stete solution satisfies (i), (ii), (iv), and (v). The LG theory was a
hreakthrough in the comtrol history and is well known now [8}. The 1QG regulator has been
shown to eonsist of the Kalman-Bucy filter and LQ regulator. For finite-time optimal prob-
lem initial and terminal times are fixed for this standard problem. = Since the steady state
L0 regulator requims the terminal time t_ =% and the steady state Kalman-Bucy filter
the initial time t =wee , the computation of the Riccati matrix equation is difficult’
bacause of integra%xon cver infinite interval.

Tromas[6] - comsidered LQ regulators with the receding horizon with control energy
ana the .moving ternimal constraint and also linear state estimators sepmtely with ‘some

ictraints. The stability property “of this receding~horizen control was given by Klein-
v"fa.n[’?] Xuioh -and Pearson[1] - considered receding-horizon - LQ pioblems for time-varying
systems with gmml quadratic cost -and ghowed its optimal control satisfies (i), (1i),
{1i1), and (iv). ‘This paper considers L6 regulator problems with moving horizons and will
show that its optimal solution satisfies (i) through (v).

II. Main Results
Consider 1inear stochstic systems'

®(t) = A(E)R(E) # Blthu(t) + w(t) : (1}
y(t) = elEIx(t) + w(t) A2y

where the state (1) £ R, the comtrol u(t) € R®, the output y(t) € RP, and noises w(t) and



v(t) satisfy
Efx(t)3 = %, B[(x(tc)-xo)(x(to)wxo)'] =7:°
Elw(t)] = E[v(t)] = 0, Elw{t)v’(t)1 = 0 (3)
Elw(tw' ()] = Q (1), ELv(tWv'(x)] = Ry(t).

The problem is to-find a opiimal control which minimizes the moving cost

Jlu) = EL x'"(++T OE(t+T Ix(t+T ) + ;t+75{x'(t)Q (t)x(r) + u'(t)RQ(t)u(t)}dt
r’°2 r T £-T, 2 uy

at instant time t, with variance[x(t-Tz)J=f (t), where T, is the receding horizon.ant T the
approaching horizon for Kalman-Bucy filters. The optimal solution is derivéd from the =~
standard LQG problem by replacing t_ and t_. by t-te and t+Tr respectively. The optimal
filter with the approaching horizon is given by

x(t) = ACDX(E) + B(thu(r) + I(t-Tg, D)0 (DR ()Y (£)-C(Ix(£))  (5)

where ar(1,t) 1 ; )
—mE = ALY + I(TL,0AN () - TTLEC ()R ()e(D(T,1) + Q (1) (6)
and L(7,T) =Fl(t)r <t. The LQ regulator is given by X
w(t) = -RIN(£)B' (H)K(E,t4T,)x(t) )
where K(t.1) -2 1
PR = ATCOK(E,1) + K(E,0AME) = K(EDBOR (B (OK(E,T) + Q(1) (8)

and K(r,1) = E{t)y t<r . We investigate conditions under which the optimal systems are
stable. It is noted that FI QQ, RQ, and often F2’ Qi’ and Rl are design parameters,

Theorem 3.

(1) If{A(f),C(t)}is uniformly completely observable, B(t) is boynded, at<R(t)< ok,
0< Q{t) <o, and -Fi(t) +A(t)Fl(t)+Fl(t)A'(t)—Fl(t)c'(t)Rl (t)C(t)}l(t) +ngt)1 0,

g?gg Ehe Kalman-Bucy filter with the approaching horizon (5) is uniformly asymptotically

(2) IftA(t),B(t)} is upiformly completely controllable, C(t)} éf bounded,a‘I<R2(t) <x.I,
0 j_QQ(t)prI, and Fz(t) + A’(t)?l(t)+}‘2(t)A(t}-Fz(t)B(t)R2 (t)B‘(t)Fz(tS} Q2(t)§_0,

then the LQ regulator with the receding horizon(7) is uniformly asymptotically stable.
Theorem 2.

(1) Assume that all conditions in Theorem ! are satisfied except F (t) and F (). The foll-
owing Kalman-Bucy filter and LQ regulator are uniformly asymptotically stable.

x(£) = AGR(E) + BOOU) + I7H(e-T, )0 (R () (y (1)-CC)x(2))

(9)
m%._;_t__): ~AY (T (T ,t)~ T(t,t)alt) - F(r,t)Ql(t)I‘(T,t) + C'(t)REl(t)C(t),I‘(T,TFO
and ) : . : (10)
u(t) = RoPE)BT(R)P (14T Ix(t) Q1)
T CAGP(E,1) - PCE,DATE) = Pl1,1)Q, (0Pt 1) + B(t)kglct)a(t),p(zi;g=o,

:Theorem 3.
‘{1). The error variance of the estimator (5) and (9) satisfies
b ° by -1 . e -
e sty) < ELCe(r, )ty D) (e(t, )-e(t, 1)1 I< T00t ~Tet ) 40 (15t WE-T “(8 -Teut )
x¢ (tl?to)
(2) The IQ regulator with the receding horizon (7) and (11) has the following bounds: -

X CEIKCE S8 x(e ) of 7 (1), 0)xCe)our (R, edule)Jatex? (t DECE DxCey).

~-81-



< x'(to)f-l(tc,to+Tr)x(tg)/

Remarks

(l) Corresponding results for time-invariant system are possible.. Espaclal]., E {t) = 2(t'
20 for time-invariant systems in Theorem 1.
(;) For time-invariant systems feedback gains are all constants.
{3) Computation of Riceati equations is od Finite m‘tewals and thus It is easy to zompute .
vith modern computers.
f1° The case T.= = and T, = = correspond to steady state regulator and filter respectzvely
<5) Memory reqﬁirement or feedback gains is smaller that that of the standard problems
11I. Simulation Results
The algorithms presented in this paper are tested with a practical model. The LQG
regulator with moving horizons ~was similar to the standard LQG regulator for this model.
IV. Conclusion.

The vreceding horizon concept has been successfully applied to linear discrete and
continuous systems [1,2,3). 'This paper provides a unified approach for the LQG regulator
with moving horizons. Those stochastic control obtained in this paper will find many
applications because of great many applications of LQS problems. The results in Theorem 2
can't be applied to function space models like delayed systems since the corresponding
operators do not generally have inverses. However the results in Theorem 1 could be )
~applied to function space models, though easy ways to find Pl(t) and F2(t} are in order.
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