• Title/Summary/Keyword: LPS-induced arthritis

Search Result 96, Processing Time 0.022 seconds

Pinus densiflora Gnarl Inhibits Migration through Suppression of Protein Kinase C in C6 Glioma Cells (C6 Glioma 세포에서 Protein Kinase C Alpha 발현 저해를 통한 송절 약침액의 이주 억제 효과)

  • Min, Ilguk;Lee, Kangpa;Chang, Haeryong;Moon, Jinyoung
    • Korean Journal of Acupuncture
    • /
    • v.32 no.2
    • /
    • pp.51-58
    • /
    • 2015
  • Objectives : Pinus densiflora gnarl, called Song-Jeol in Korean medicine, has been used to cure inflammatory diseases such as arthritis. In the present study, we evaluated inhibitory property of Song-Jeol pharmacopuncture(SJ) on C6 glioma cell migration. Methods : To evaluate cell viability on C6 glioma cells of SJ, the viability was assessed by using Ez-cytox assay kit. The cell migration was assessed by wound-healing assay and Boyden chamber assay, respectively. LPS-induced NO productions were determined by using the Griess reagent. The expression of iNOS and protein kinase $C(PKC)-{\alpha}$ were estimated by western blotting assay. Results : In the wound-healing assay and Boyden chamber assay, SJ showed a significant inhibition on serum-induced C6 glioma cell migration. In addition, NO production was decreased by SJ through suppression of iNOS expression in LPS-stimulated C6 glioma cell. Futhermore, LPS-induced protein kinase $C(PKC)-{\alpha}$ expression was effectively inhibited by SJ. Conclusions : These results demonstrated that SJ was useful for the suppression of the C6 glioma cell migration.

Immune Regulatory Function of Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase in Orally Tolerance to Type II Collagen-induced Animal Model (제2형 콜라겐 경구관용 유도 동물모델에서 수지상 세포의 Indoleamine 2,3-dioxygenase의 의존성 관절염 항원 특이 T세포 증식반응 제어 연구)

  • Park, Min-Jung;Min, So-Youn;Park, Kyoung-Su;Cho, Mi-La;CHo, Young-Gyu;Min, Jun-Ki;Yoon, Chong-Hyeon;Park, Sung-Hwa;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.221-231
    • /
    • 2005
  • Background: Immune regulatory dendritic cells (DCs) play an important role in maintaining self-tolerance. Recent evidences demonstrate that DCs expressing indoleamine 2,3-dioxygenase (IDO), which is involved in tryptophan catabolism, play an important role in immunoregulation and tolerance and induce T cell apoptosis. This study was devised to examine the role of IDO in the oral tolerance induction in collagen-induced arthritis (CIA) mouse model. Methods: Beginning 2 weeks before immunization, CII was fed six times to DBA/1 mice and the effect on arthritis was assessed. In tolerized mice, $CD11c^+$ DCs were isolated and stimulated with CII, IFN-${\gamma}$, and LPS with or without IDO inhibitor, 1-methyl-DL-tryptophan (1-MT) and IDO expression by $CD11c^+$ DCs was analyzed using FACS and RT-PCR. The expression of IDO, MHC II, CD80, and CD86 by $CD11c^+$ DCs were examined using confocal microscopy. Regulatory effect of $CD11c^+$ DCs on Ag-specific T cell proliferative response to CII was examined by mixed lymphocyte reaction (MLR) with or without 1-MT. Results: The proportion of IDO-expressing $CD11c^+$ DCs was slightly higher in tolerized mice than in CIA mice and significantly increased after stimulation with CII, IFN-${\gamma}$, and LPS in an IDO-dependent manner. On confocal microscopic examination, the expression of IDO was higher and those of MHC II and CD86 were lower in CD11c + DCs from tolerized mice compared to those from CIA mice. On MLR, $CD11c^+$ DCs from tolerized mice inhibited T cell proliferative response to CII in an IDO-dependent manner. Conclusion: Enhanced IDO expression by $CD11c^+$ DCs from tolerized mice may contribute to the regulation of proliferative response of CII-reactive T cells and could be involved in the induction of oral tolerance to CII.

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung;Jung, Kyung Hee;Yoo, Jaeho;Park, Jung Hee;Yan, Hong Hua;Fang, Zhenghuan;Lim, Joo Han;Kwon, Seong-Ryul;Kim, Myung Ku;Park, Hyun-Ju;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.172-183
    • /
    • 2020
  • Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

Kalopanaxsaponin B Ameliorates TNBS-Induced Colitis in Mice

  • Jeong, Jun-Ju;Jang, Se-Eun;Joh, Eun-Ha;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.457-462
    • /
    • 2012
  • The stem-bark of Kalopanax pictus (KP, family Araliaceae), of which main constituent is kalopanaxsaponin B, has been used for asthma, rhinitis, and arthritis in Chinese traditional medicine. To clarify anticolitic effect of KP, we examined anti-inflammatory effect of KP extract and kalopanaxsaponin B in lipopolysaccharide (LPS)-stimulated peritoneal macrophage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. Of KP extracts, KP BuOH-soluble fraction most potently inhibited LPS-induced IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ expression, as well as NF-${\kappa}B$ activation. However, KP BuOH fraction increased IL-10, an anti-inflammatory cytokine. KP BuOH fraction also inhibited colon shortening and myeloperoxidase activity in TNBS-induced colitic mice. KP BuOH fraction also potently inhibited the expression of the pro-inflammatory cytokines, IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as the activation of NF-${\kappa}B$. Kalopanaxsaponin B, a main constituent of KP, inhibited TNBS-induced colonic inflammation, including colon shortening, and TNBS-increased myeloperoxidase activity pro-inflammatory cytokine expression and NF-${\kappa}B$ activation in mice. Based on these findings, KP, particularly its main constituent, kalopanaxsaponin B, may ameliorate colitis by inhibiting NF-${\kappa}B$ pathway.

Anti-inflammatory Effects of Actinidia Polygama Ethanol Extract in through the Regulated NF-κ B and MAPKs Activation in LPS Stimulated RAW 264.7 Cells (RAW 264.7 세포에 대한 NF-κ B와 MAPK 활성 억제를 통한 개다래 열매 에탄올 추출물의 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.119-128
    • /
    • 2023
  • Purpose : The fruit of Actinidia polygama has been used in oriental medicine for the treatment of gout, rheumatoid arthritis, and inflammation. Though A. polygama exhibited anti-inflammatory activity in RAW 264.7 cells and carrageenan-induced rat paw edema, the exact mechanism for anti-inflammation was not evaluated yet. In this study, the anti-inflammatory mechanisms of A. polygama ethanol extract (APEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : WST-1 assay was applied to analyze the cytotoxic effect of APEE in RAW 264.7 cells. The productions of nitric oxide (NO) and prostaglandin (PG) E2 were analyzed by the Griess reaction and enzyme immunoassay (EIA) assay, respectively. In addition, protein expressions for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were measured by Western blot analysis. The activated status of an inflammatory transcription factor, NF-κ B, and its upstream signaling molecules, mitogen-activated protein kinases (MAPKs), was also evaluated by Western blot analysis. Results : As a result, APEE treatment did not exhibit any cytotoxicity until the concentration of 200 ㎍/㎖. APEE treatment significantly inhibited NO and PGE2 productions as well as their enzymes, iNOS and COX-2 in a dose-dependent manner. The inflammatory transcription factor, NF-κ B, was also attenuated by APEE treatment. In addition, the phosphorylated status of MAPKs such as extracellular regulated kinase (ERK), c-jun NH2 kinase (JNK), and p38, were significantly diminished by APEE treatment in LPS stimulated RAW 264.7 cells. Conclusion : Consequently, APEE treatment significantly attenuated the production of inflammatory mediators and their enzyme expressions in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-κ B, and upstream signaling molecules, MAPKs, were also significantly attenuated by APEE treatment in LPS-activated RAW 264.7 cells. These results indicate that APEE might be a candidate to be utilized as a promising candidate for the treatment of inflammatory disorders.

Anti-oxidative and Anti-inflammatory Effect of Fractionated Extracts of Cynomorium Songaricum (쇄양의 항산화 및 항염증 효과)

  • Kim, Kyung-Ae;Yi, Hyo-Seung;Yun, Hyun-Jeong;Park, Sun-Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1320-1331
    • /
    • 2009
  • Oxidative stress and inflammation are important events in the development of chronic inflammatory diseases including arthritis, atherosclerosis, diabetes, hypertension. Cynomorium songaricum (CS) has been used as a traditional Korean herbal medicine, and it is currently used in traditional clinics to treat frequent urination, spermatorrhea, weakness of the sinews and constipation in the folk medicine. The aim of this study was to determine whether fractionated extracts of CS inhibit free radical generation such as DPPH radical, superoxide radical, nitric oxide and peroxynitrite, production of nitrite an index of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. Our results indicated that the most superior extract which scavenged DPPH radical, reactive oxygen species (ROS) and RNS was CS ethyl acetate extract (CSEA). Moreover, CSEA significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1{\beta}$ and IL-6 formation in macrophages. Furthermore, CSEA treatment also blocked LPS-induced intracellular ROS production and the activation of NF-${\kappa}B$. These findings indicate that CSEA inhibits the production of pro-inflammatory mediators and cytokines via the suppression of ROS production and NF-${\kappa}B$ activation. Take together, these results indicate that CSEA has the potential for use as an natural anti-oxidant and an agent of anti-chronic inflammatory diseases.

Peroxynitrite Scavenging Mechanism of Ojawhan (오자환(五子丸)의 Peroxynitrite 제거 작용)

  • Kim, Hyung-Joon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.107-118
    • /
    • 2005
  • Objectives : Peroxynitrite $(ONOO^-)$, fonned from the reaction of $O_2^-$ and NO, is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in the aging process and age-related disease such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. Due to the lack of endogenous enzymes to thwart $ONOO^-$ activation, developing a specific $ONOO^-$ scavenger is remarkably important. The aim of this study was to investigate scavenging activities of $ONOO^-$ and its precursors, NO and $O_2^-$ and its scavenging mechanism of Ojawhan. Methods : To investigate scavenging activities of $ONOO^-$, NO, $O_2^-$ and its scavenging mechanism using fluorescent probes, DCFDA, DAF-2 and DHR 123. The $ONOO^-$ scavenging activity on Ojawhan was assayed by measuring oxidized dihydrorhodamine 123 (DHR 123) by fluorometry. Oxidative stress was induced by strong oxidants t-butyl hydroperoxide (t-BHP). Endothelial cell (YPEN-1) was used for detection of intracellular oxidative stress. Results : Ojawhan markedly scavenged authentic $ONOO^-$, $O_2^-$ and NO. It also inhibited $ONOO^-$ induced by $O_2^-$ and NO which are derived from SIN-1. Furthennore, ${\underline{Ojawhan}}$ blocked lipopolysaccharide (LPS)-induced $ONOO^-$, $O_2^-$ and NO generation utilizing kidney homogenates of LPS-injected mouse and inhibited t-BHP-induced ROS and $ONOO^-$ in endothelial cell culture system. Conclusions : These results suggest that Ojawhan be developed as an effective $ONOO^-$ scavenger for the prevention of $ONOO^-$ involved diseases and age-related diseases.

  • PDF

Peroxynitrite Scavenging Activity of Vespae Nidus (노봉방(露峰房)의 Peroxynitrite 제거 효과)

  • Jeong Ji-Cheon;Shin Won-Yong
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.171-181
    • /
    • 2006
  • Objectives : Peroxynitrite($ONOO^-$), superoxide anion(${\cdot}{O_2}^-$) and nitric oxide (NO) is a cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA. It has been implicated in the aging process and age-related disease such as Alzheimer's disease, rheumatoid arthritis, cancer and atherosclerosis. The aim of this study was to investigate scavenging activities for $ONOO^-$ and its precursors, NO and ${\cdot}{O_2}^-$ of Vespae Nidus. Methods : Dichlorodihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) and dihydrorhodamine 123 (DHR 123) were used to investigate scavenging activities of $ONOO^-,\;NO,\;{\cdot}{O_2}^-$. Six-months-old ICR mice were used. After mice were injected with lipopolysaccharides(LPS), kidney organization was evaluated. Three comparison groups of ICR mice were used : a normal group, an experimental group that was fed Vespae Nidus extract and then injected with LPS, and a control group that was injected with LPS. Scavenging activities of $ONOO^-,\;NO,\;{\cdot}{O_2}^-$ in these groups were measured in the same way. Results : Vespae Nidus markedly scavenged authentic $ONOO^-,\;{\cdot}{O_2}^-$ and NO. It also inhibited $ONOO^-$ induced by ${\cdot}{O_2}^-$ and NO which are derived trom SIN-1. Furthermore, it inhibited $ONOO^-,\;{\cdot}{O_2}^-$, and NO generation by Vespae Nidus in LPS-treated ICR mouse kidney postmitochondria. Conclusions : These results suggest that Vespae Nidus might be developed as an effective $ONOO^-,\;{\cdot}{O_2}^-$, and NO scavenger for the prevention of the aging process and age-related diseases.

  • PDF

Attenuation of Anemia by Relmα in LPS-Induced Inflammatory Response

  • Lee, Mi-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we propose to evaluate the effect of resistin-like molecule alpha ($Relm{\alpha}$) on the progression of anemia of inflammation. Anemia of inflammation is a common feature of inflammatory disorders, including chronic kidney disease, infections, and rheumatoid arthritis. $Relm{\alpha}$ is highly up-regulated in various inflammatory states, especially those involving asthma, intestinal inflammation, and parasitic diseases, and regulates the pathogenesis of those diseases. However, the role of $Relm{\alpha}$ in anemia of inflammation is unknown. To explore the roles of $Relm{\alpha}$ in anemia of inflammation in vivo, we generated mouse model of the disease by injecting 0.25 mg/kg lipopolysaccharides (LPS) intraperitoneally into $Relm{\alpha}-deficient$ and wild-type (WT) mice daily for 10 days. Research data was expressed as differences between LPS-treated $Relm{\alpha}-deficient$ and WT mice by a two-tailed non-parametric Mann-Whitney U-test using GraphPad Instat program. The results of the study are as follows: LPS-treated $Relm{\alpha}-deficient$ mice had significantly (p<0.05) lower hemoglobin contents, hematocrit levels and red blood cell indices including mean corpuscular volume, mean corpuscular hemoglobin than WT controls. This decrease was accompanied by significant (p<0.05) increase in total white blood cell and monocyte counts in the blood. However, there was no significant difference in mRNA levels of hepatic hepcidin and renal erythropoietin between the two animal groups. Taken together, these results indicates that $Relm{\alpha}$ deficiency exacerbates the anemia by increasing inflammation, suggesting therapeutic value of $Relm{\alpha}$ in the treatment of anemia of inflammation.

The Anti-inflammatory Effect of Cinnamomi Ramulus (계지의 항염 효과에 관한 연구)

  • Park Hi-Joon;Lee Ji-Suk;Lee Jae-Dong;Kim Nam-Jae;Pyo Ji-Hee;Kang Jun-Mo;Choe Il-Hwan;Kim Su-Young;Shim Bum-Sang;Lee Je-Hyun;Lim Sabina
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.140-151
    • /
    • 2005
  • Objectives: Cinnamomi Ramulus (CR), the young twig of Cinnamomum loureirri nees, has been used for treating symptoms related to pain, rheumatic arthritis and inflammation in Korean herb medicine. This study was carried out to investigate the anti-inflammatory effect of CR in vivo and in vitro. Methods: Extracts of CR were prepared and the chemical components of the extracts were examined by gas chromatography-mass spectrometry (GC-MS). The extracts were administrated to the rat paw edema model induced by carrageenan to evaluate the anti-inflammatory effect of CR. The expressions of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were also quantified in lipopolysaccharide(LPS)­induced RAW 264.7 macrophages to survey the effect of CR in vitro. The main components were cinnamaldehyde and coumarin. Results: We examined the anti-inflammatory activity of the $80\%$ ethanol extract of Cinnamomi Ramulus in vivo by using carrageenan-induced rat paw edema model. Maximum inhibition of $54.91\%$ was noted at the dose of l1000mg/kg after 2 hours of drug administration in carrageenan-induced rat paw edema and this showed a potent anti-inflammatory effect. Conclusions: The results showed that Cinnamomi Ramulus suppressed dose-dependently LPS-induced NO production in RAW 264.7 macrophages and also decreased iNOS protein expression. Cinnamomi Ramulus also showed a significant inhibitory effect in LPS-induced PGE2 production and COX-2 expression.

  • PDF