Anti-oxidative and Anti-inflammatory Effect of Fractionated Extracts of Cynomorium Songaricum

쇄양의 항산화 및 항염증 효과

  • Kim, Kyung-Ae (Department of Prescriptionology, College of Oriental Medicine, Dongguk University) ;
  • Yi, Hyo-Seung (Department of Prescriptionology, College of Oriental Medicine, Dongguk University) ;
  • Yun, Hyun-Jeong (Department of Prescriptionology, College of Oriental Medicine, Dongguk University) ;
  • Park, Sun-Dong (Department of Prescriptionology, College of Oriental Medicine, Dongguk University)
  • 김경애 (동국대학교 한의과대학 방제학교실) ;
  • 이효승 (동국대학교 한의과대학 방제학교실) ;
  • 윤현정 (동국대학교 한의과대학 방제학교실) ;
  • 박선동 (동국대학교 한의과대학 방제학교실)
  • Published : 2009.12.25

Abstract

Oxidative stress and inflammation are important events in the development of chronic inflammatory diseases including arthritis, atherosclerosis, diabetes, hypertension. Cynomorium songaricum (CS) has been used as a traditional Korean herbal medicine, and it is currently used in traditional clinics to treat frequent urination, spermatorrhea, weakness of the sinews and constipation in the folk medicine. The aim of this study was to determine whether fractionated extracts of CS inhibit free radical generation such as DPPH radical, superoxide radical, nitric oxide and peroxynitrite, production of nitrite an index of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. Our results indicated that the most superior extract which scavenged DPPH radical, reactive oxygen species (ROS) and RNS was CS ethyl acetate extract (CSEA). Moreover, CSEA significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1{\beta}$ and IL-6 formation in macrophages. Furthermore, CSEA treatment also blocked LPS-induced intracellular ROS production and the activation of NF-${\kappa}B$. These findings indicate that CSEA inhibits the production of pro-inflammatory mediators and cytokines via the suppression of ROS production and NF-${\kappa}B$ activation. Take together, these results indicate that CSEA has the potential for use as an natural anti-oxidant and an agent of anti-chronic inflammatory diseases.

Keywords

References

  1. Park, S.N. Skin aging and antioxidants. J Korean Soc Cosmetic Chem 23: 75-132, 1997
  2. Haddad, J.J. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14(11):879-897, 2002 https://doi.org/10.1016/S0898-6568(02)00053-0
  3. Bunn, H.F., Poyton, R.O. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76(3):839-885, 1996 https://doi.org/10.1152/physrev.1996.76.3.839
  4. Delanty, N., Dichter, M.A. Oxidative injury in the nervous system. Acta Neurol Scand 98: 145-153, 1998 https://doi.org/10.1111/j.1600-0404.1998.tb07285.x
  5. Brune, B., Zhou, J., Von Knethen, A. Nitric oxide, oxidative stress, and apoptosis. Kidney Int Suppl 84: 22-24, 2003
  6. Azad, N., Rojanasakul, Y., Vallyathan, V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11(1):11-15, 2008
  7. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., Farnarier, C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24(1):25-29, 2003 https://doi.org/10.1016/S1471-4906(02)00013-3
  8. O'Connell, M.A., Bennett, B.L., Mercurio, F., Manning, A.M., Mackman, N. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J Biol Chem 273(46):30410-30414, 1998 https://doi.org/10.1074/jbc.273.46.30410
  9. Ohshima, H., Bartsch, H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305(2):253-264, 1994 https://doi.org/10.1016/0027-5107(94)90245-3
  10. Forman, H.J., Torres, M. Redox signaling in macrophages. Mol Aspects Med 22(4-5):189-216, 2001 https://doi.org/10.1016/S0098-2997(01)00010-3
  11. Lo, A.H., Liang, Y.C., Lin-Shiau, S.Y., Ho, C.T., Lin, J.K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis 23(6):983-991, 2002 https://doi.org/10.1093/carcin/23.6.983
  12. Bai, S.K., Lee, S.J., Na, H.J., Ha, K.S., Han, J.A., Lee, H., Kwon, Y.G., Chung, C.K., Kim, Y.M. beta-Carotene inhibits inflammatory gene expression in lipopolysaccharide stimulated macrophages by suppressing redox-based NF-kappaB activation. Exp Mol Med 37(4):323-334, 2005 https://doi.org/10.1038/emm.2005.42
  13. Kamata, H., Manabe, T., Kakuta, J., Oka, S., Hirata, H. Multiple redox regulation of the cellular signaling system linked to AP-1 and NFkappaB: effects of N-acetylcysteine and H2O2 on the receptor tyrosine kinases, the MAP kinase cascade, and IkappaB kinases. Ann N Y Acad Sci 973: 419-422, 2002 https://doi.org/10.1111/j.1749-6632.2002.tb04675.x
  14. Hinz, B., Brune, K. Cyclooxygenase-2--10 years later. J Pharmacol Exp Ther 300(2):367-375, 2002 https://doi.org/10.1124/jpet.300.2.367
  15. 이효승, 허숙경, 윤현정, 최재우, 정재하, 박선동. 마우스 대식 세포에서 혈갈(血竭)의 항산화 및 항염증 효과. 大韓本草學會誌 23(2):179-192, 2008
  16. Lin, Y.L., Lin, J.K. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52(3):465-472, 1997 https://doi.org/10.1124/mol.52.3.465
  17. Tsai, S.H., Lin-Shiau, S.Y., Lin, J.K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol 126(3):673-680, 1999 https://doi.org/10.1038/sj.bjp.0702357
  18. Liang, Y.C., Huang, Y.T., Tsai, S.H., Lin-Shiau, S.Y., Chen, C.F., Lin, J.K. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20(10):1945-1952, 1999 https://doi.org/10.1093/carcin/20.10.1945
  19. 김창민 外. 完譯 中藥大辭典. 서울, 정담출판사, pp 2499-2500, 1997
  20. Dan, B., Andrew, G. Chinese Herbal Medicine: Materia Medica Revised ed. Seattle, Eastland Press, pp 340-341, 2003
  21. 王本祥. 現代中藥藥理學. 天津, 天津科學技術出版社, pp 1272-1273, 1997
  22. 이진무, 이창훈, 조정훈, 장준복, 이경섭, 최은미. 쇄양(鎖陽)의 기간별 투약이 수컷 생쥐 생식능력에 미치는 영향. 大韓韓方婦人科學會誌 20(1):16-31, 2007
  23. 이창훈, 조정훈, 장준복, 이경섭, 한지영. 쇄양(鎖陽)의 농도별 투약이 수컷 생쥐 생식능력에 미치는 영향. 大韓韓方婦人科學會誌 19(2):62-76, 2006
  24. 최홍식. 쇄양(鎖陽)과 두충(杜仲)이 골다공증 유발 후 흰쥐의 골밀도와 체중에 미치는 영향. 大韓本草學會誌 23(2):19-24, 2008
  25. 장문석, 양웅모, 김도림, 박은화, 박수연, 박성규. 쇄양(鎖陽)의Diphenyl-picryl-hydrazyl (DPPH) 소거 활성 및 HepG2 세포에 대한 항산화 효과. 大韓韓醫學方劑學會誌 15(2): 139-145, 2007
  26. Lu, Y., Wang, Q., Melzig, M.F., Jenett-Siems, K. Extracts of Cynomorium songaricum protect SK-N-SH human neuroblastoma cells against staurosporine-induced apoptosis potentially through their radical scavenging activity. Phytother Res 23(2):257-261, 2009 https://doi.org/10.1002/ptr.2605
  27. Chu, Q., Tian, X., Lin, M., Ye, J. Electromigration profiles of Cynomorium songaricum based on capillary electrophoresis with amperometric detection. J Agric Food Chem 54(21):7979-7983, 2006 https://doi.org/10.1021/jf061574b
  28. Jiang, Z.H., Tanaka, T., Sakamoto, M., Jiang, T., Kouno, I. Studies on a medicinal parasitic plant: lignans from the stems of Cynomorium songaricum. Chem Pharm Bull (Tokyo) 49(8):1036-1038, 2001 https://doi.org/10.1248/cpb.49.1036
  29. Ma, C.M., Jia, S.S., Sun, T., Zhang, Y.W. Triterpenes and steroidal compounds from cynomorium songaricum. Yao Xue Xue Bao 28(2):152-155, 1993
  30. Zhang, R.X., Jia, Z.P., Li, M.X., Wang, J., Yin, Q., Luo, J.D., Liu, H.Y. Study on the effect of Part III from Cynomorium songaricum on immunosuppressive mice induced by cyclophosphamide. Zhong Yao Cai 31(3):407-409, 2008
  31. Ma, C.M., Wei, Y., Wang, Z.G., Hattori, M. Triterpenes from Cynomorium songaricium--analysis of HCV protease inhibitory activity, quantification, and content change under the influence of heating. Nat Med (Tokyo) 63(1):9-14, 2009 https://doi.org/10.1007/s11418-008-0267-7
  32. Gyamfi, M.A., Yonamine, M., Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana. Gen Pharmacol 32: 661-667, 1999 https://doi.org/10.1016/S0306-3623(98)00238-9
  33. Gotoh, N., Niki, E. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim Biophys Acta 1115: 201-207, 1992 https://doi.org/10.1016/0304-4165(92)90054-X
  34. Sutherland, H., Khundkar, R., Zolle, O., McArdle, A., Simpson, A.W., Jarvis, J.C., Salmons, S. A fluorescence-based method for measuring nitric oxide in extracts of skeletal muscle. Nitric Oxide 5: 475-481, 2001 https://doi.org/10.1006/niox.2001.0374
  35. Kooy, N.W., Royall, J.A., Ischiropulos, H., Beckman, J.S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radical Biol Med 16: 149-156, 1994 https://doi.org/10.1016/0891-5849(94)90138-4
  36. Desai, A., Vyas, T., Amiji, M. Cytotoxicity and apopotosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci 97(7):2745-2756, 2008 https://doi.org/10.1002/jps.21182
  37. Wang, S., Chen, Y., He, D., He, L., Yang, Y., Chen, J., Wang, X. Inhibition of vascular smooth muscle cell proliferation by serum from rats treated orally with Gastrodia and Uncaria decoction, a traditional Chinese formulation. J Ethnopharmacol 114(3):458-462, 2007 https://doi.org/10.1016/j.jep.2007.08.039
  38. Wang, H., Joseph, J.A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616, 1999 https://doi.org/10.1016/S0891-5849(99)00107-0
  39. Rong, Y., Geng, Z., Lau, B.H. Ginko biloba attenuates oxidative stress in macrophages and endothelial cells. Free Radic Biol Med 20: 121-127, 1996 https://doi.org/10.1016/0891-5849(95)02016-0
  40. Moynagh, P.N. The NF-kappaB pathway. J Cell Sci 118(Pt 20):4589-4592, 2005 https://doi.org/10.1242/jcs.02579
  41. Chung, I.M., Kim, K.H., Ahn, J.K. Screening of Korean medicinal and food plants with antioxidant activity. Kor J Med Sci 6: 311-322, 1998
  42. Kunsch, C., Medford, R.M. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 85(8):753-766, 1999 https://doi.org/10.1161/01.RES.85.8.753
  43. 김민산, 허종문, 박종철. 207종 한약과 활성 한약이 포함된 19종 한약 방제의 1.1-Diphenyl-2-Picrylhydrazyl 라디칼 소거작용. 대한한의학방제학회지 12(1):159-175, 2004
  44. Kujala, T.S., Loponen, J.M., Klika, K.D., Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compound. J Agric Food Chem 48: 5338-5342, 2000 https://doi.org/10.1021/jf000523q
  45. Madamanchi, N.R., Hakim, Z.S., Runge, M.S. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. Thrombo Haemost 3: 254-267, 2004
  46. Lee, J.Y., No, J.K., Soung, D.Y., Kim, Y.J., Je, J.H., Kim, M.S., Lee, K.H., Chung, H.Y. ROS/RNS scavenging acitivity of rosmarinic acid. Kor J Gerontol 15(2):10-16, 2005
  47. Patel, R.P., McAndrew, J., Sellak, H., White, C.R., Jo, H., Freeman, B.A., Darley-Usmar, V.M. Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411(2-3):385-400, 1999 https://doi.org/10.1016/S0005-2728(99)00028-6
  48. D'Acquisto, F., May, M.J., Ghosh, S. Inhibition of nuclear factor kappa B (NF-B): an emerging theme in anti-inflammatory therapies. Mol Interv 2(1):22-35, 2002 https://doi.org/10.1124/mi.2.1.22
  49. Woo, C.H., Lim, J.H., Kim, J.H. Lipopolysaccharide induces matrix metallo proteinase-9 expression via a mitochondrial reactive oxygen species-p38 kinase -activator protein-1 pathway in Raw 264.7 cells. J Immunol 173(11):6973-6980, 2004 https://doi.org/10.4049/jimmunol.173.11.6973
  50. Gomez, P.F., Pillinger, M.H., Attur, M., Marjanovic, N., Dave, M., Park, J., Bingham, C.O. 3rd, Al-Mussawir, H., Abramson, S.B. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-kappaB subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. J Immunol 175(10):6924-6930, 2005 https://doi.org/10.4049/jimmunol.175.10.6924
  51. Abul, K.A., Andrew, H.L., Shiv, P. 세포분자면역학 6판. 서울, 이퍼블릭, pp 271-296, 2008
  52. Li, Q., Verma, I.M. NF-kappaB regulation in the immune system. Nat Rev Immunol 2(10):725-734, 2002 https://doi.org/10.1038/nri910
  53. Pierce, J.W., Schoenleber, R., Jesmok, G., Best, J., Moore, S.A., Collins, T., Gerritsen, M.E. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272(34):21096-21103, 1997 https://doi.org/10.1074/jbc.272.34.21096
  54. Lewis, A.J., Manning, A.M. New targets for anti-inflammatory drugs. Curr Opin Chem Biol 3(4):489-494, 1999 https://doi.org/10.1016/S1367-5931(99)80071-4
  55. Park, M.H., Song, H.S., Kim, K.H., Son, D.J., Lee, S.H., Yoon, D.Y., Kim, Y., Park, I.Y., Song, S., Hwang, B.Y., Jung, J.K., Hong, J.T. Cobrotoxin inhibits NF-kappa B activation and target gene expression through reaction with NF-kappa B signal molecules. Biochemistry 44(23):8326-8336, 2005 https://doi.org/10.1021/bi050156h
  56. Grilli, M., Chiu, J.J., Leonardo, M.J. NF-κB Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol 143: 1-62, 1993 https://doi.org/10.1016/S0074-7696(08)61873-2
  57. Ivanov, V., Merkenschlager, M., Ceredig, R. Antioxidant treatment of thymic organ cultures decreases NF-$\kappa$B and TCF1(a) transcription factor activities and inhibits alpha beta T cell development. J Immunol 151(9):4694-4704, 1993
  58. Lee, S.J., Bai, S.K., Lee, K.S., Namkoong, S., Na, H.J., Ha, K.S., Han, J.A., Yim, S.V., Chang, K., Kwon, Y.G., Lee, S.K., Kim, Y.M. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol Cells 16(1):97-105, 2003
  59. Shishodia, S., Potdar, P., Gairola, C.G., Aggarwal, B.B. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24(7):1269-1279, 2003 https://doi.org/10.1093/carcin/bgg078