Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.153

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis  

Kim, Juyoung (Department of Medicine, College of Medicine, Inha University)
Jung, Kyung Hee (Department of Medicine, College of Medicine, Inha University)
Yoo, Jaeho (School of Pharmacy, Sungkyunkwan University)
Park, Jung Hee (Department of Medicine, College of Medicine, Inha University)
Yan, Hong Hua (Department of Medicine, College of Medicine, Inha University)
Fang, Zhenghuan (Department of Medicine, College of Medicine, Inha University)
Lim, Joo Han (Department of Medicine, College of Medicine, Inha University)
Kwon, Seong-Ryul (Department of Medicine, College of Medicine, Inha University)
Kim, Myung Ku (Department of Medicine, College of Medicine, Inha University)
Park, Hyun-Ju (School of Pharmacy, Sungkyunkwan University)
Hong, Soon-Sun (Department of Medicine, College of Medicine, Inha University)
Publication Information
Biomolecules & Therapeutics / v.28, no.2, 2020 , pp. 172-183 More about this Journal
Abstract
Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.
Keywords
Rheumatoid arthritis; Collagen-induced arthritis; $PI3KC2{\gamma}$; RANKL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Harris, S. J., Foster, J. G. and Ward, S. G. (2009) PI3K isoforms as drug targets in inflammatory diseases: lessons from pharmacological and genetic strategies. Curr. Opin. Investig. Drugs 10, 1151-1162.
2 Hirsch, E., Katanaev, V. L., Garlanda, C., Azzolino, O., Pirola, L., Silengo, L., Sozzani, S., Mantovani, A., Altruda, F. and Wymann, M. P. (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049-1053.   DOI
3 Ho, L. K., Liu, D., Rozycka, M., Brown, R. A. and Fry, M. J. (1997) Identification of four novel human phosphoinositide 3-kinases defines a multi-isoform subfamily. Biochem. Biophys. Res. Commun. 235, 130-137.   DOI
4 Hofbauer, L. C. and Heufelder, A. E. (2001) The role of osteoprotegerin and receptor activator of nuclear factor kappaB ligand in the pathogenesis and treatment of rheumatoid arthritis. Arthritis Rheum. 44, 253-259.   DOI
5 Huber, L. C., Distler, O., Tarner, I., Gay, R. E., Gay, S. and Pap, T. (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45, 669-675.   DOI
6 Iwamoto, T., Okamoto, H., Toyama, Y. and Momohara, S. (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 275, 4448-4455.   DOI
7 Jia, Q., Cheng, W., Yue, Y., Hu, Y., Zhang, J., Pan, X., Xu, Z. and Zhang, P. (2015) Cucurbitacin E inhibits TNF-${\alpha}$-induced inflammatory cytokine production in human synoviocyte MH7A cells via suppression of PI3K/Akt/NF-${\kappa}B$ pathways. Int. Immunopharmacol. 29, 884-890.   DOI
8 Jones, D. H., Kong, Y. Y. and Penninger, J. M. (2002) Role of RANKL and RANK in bone loss and arthritis. Ann. Rheum. Dis. 61 Suppl 2, ii32-ii39.   DOI
9 Katso, R., Okkenhaug, K., Ahmadi, K., White, S., Timms, J. and Waterfield, M. D. (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615-675.   DOI
10 Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. and Fahmi, H. (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33-42.   DOI
11 Kim, D. I., Kim, S. R., Kim, H. J., Lee, S. J., Lee, H. B., Park, S. J., Im, M. J. and Lee, Y. C. (2012) PI3K-${\gamma}$ inhibition ameliorates acute lung injury through regulation of $I{\kappa}B{\alpha}/NF$-${\kappa}B$ pathway and innate immune responses. J. Clin. Immunol. 32, 340-351.   DOI
12 Koch, A. E., Kunkel, S. L., Harlow, L. A., Johnson, B., Evanoff, H. L., Haines, G. K., Burdick, M. D., Pope, R. M. and Strieter, R. M. (1992) Enhanced production of monocyte chemoattractant protein-1 in rheumatoid arthritis. J. Clin. Invest. 90, 772-779.   DOI
13 Li, Z., Jiang, H., Xie, W., Zhang, Z., Smrcka, A. V. and Wu, D. (2000) Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287, 1046-1049.   DOI
14 Lloyd, G. and Deakin, H. G. (1975) Phobias complicating treatment of uterine carcinoma. Br. Med. J. 4, 440.   DOI
15 McInnes, I. B. and Schett, G. (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429-442.   DOI
16 McInnes, I. B. and Schett, G. (2011) The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205-2219.   DOI
17 Nishimoto, N., Kishimoto, T. and Yoshizaki, K. (2000) Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Ann. Rheum. Dis. 59 Suppl 1, i21-i27.   DOI
18 Min, D. J., Cho, M. L., Lee, S. H., Min, S. Y., Kim, W. U., Min, J. K., Park, S. H., Cho, C. S. and Kim, H. Y. (2004) Augmented production of chemokines by the interaction of type II collagen-reactive T cells with rheumatoid synovial fibroblasts. Arthritis Rheum. 50, 1146-1155.   DOI
19 Mukaida, N., Mahe, Y. and Matsushima, K. (1990) Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J. Biol. Chem. 265, 21128-21133.   DOI
20 Mulherin, D., Fitzgerald, O. and Bresnihan, B. (1996) Synovial tissue macrophage populations and articular damage in rheumatoid arthritis. Arthritis Rheum. 39, 115-124.   DOI
21 O'Farrell, F., Rustenm, T. E. and Stenmark, H. (2013) Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J. 280, 6322-6337.   DOI
22 Pap, T. and Korb-Pap, A. (2015) Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings. Nat. Rev. Rheumatol. 11, 606-615.   DOI
23 Boyle, D. L., Kim, H. R., Topolewskim, K., Bartok, B. and Firestein, G. S. (2014) Novel phosphoinositide 3-kinase ${\delta},{\gamma}$ inhibitor: potent antiinflammatory effects and joint protection in models of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 348, 271-280.   DOI
24 Pirola, L., Zvelebil, M. J., Bulgarelli-Leva, G., Van Obberghen, E., Waterfield, M. D. and Wymann, M. P. (2001) Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase alpha (PI3Kalpha). Functions of lipid kinase-deficient PI3Kalpha in signaling. J. Biol. Chem. 276, 21544-21554.   DOI
25 Rasmussen, A. L., Wang, I. M., Shuhart, M. C., Proll, S. C., He, Y., Cristescu, R., Roberts, C., Carter, V. S., Williams, C. M., Diamond, D. L., Bryan, J. T., Ulrich, R., Korth, M. J., Thomassen, L. V. and Katze, M. G. (2012) Chronic immune activation is a distinguishing feature of liver and PBMC gene signatures from HCV/HIV coinfected patients and may contribute to hepatic fibrogenesis. Virology 430, 43-52.   DOI
26 Reddy, V. A. and Rao, N. A. (1976) Dihydrofolate reductase from soybean seedlings. Characterization of the enzyme purified by affinity chromatography. Arch. Biochem. Biophys. 174, 675-683.   DOI
27 Asagiri, M., Sato, K., Usami, T., Ochi, S., Nishina, H., Yoshida, H., Morita, I., Wagner, E. F., Mak, T. W., Serfling, E. and Takayanagi, H. (2005) Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202, 1261-1269.   DOI
28 Bottini, N. and Firestein, G. S. (2013) Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24-33.   DOI
29 Rommel, C., Camps, M. and Ji, H. (2007) PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol. 7, 191-201.   DOI
30 Romas, E., Gillespie, M. T. and Martin, T. J. (2002) Involvement of receptor activator of NFkappaB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30, 340-346.   DOI
31 Udagawa, N. (2003) The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. J. Bone Miner. Metab. 21, 337-343.   DOI
32 Rosengren, S., Corr, M., Firestein, G. S. and Boyle, D. L. (2012) The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann. Rheum. Dis. 71, 440-447.   DOI
33 Tabas, I. (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36-46.   DOI
34 Takayanagi, H., Iizuka, H., Juji, T., Nakagawa, T., Yamamoto, A., Miyazaki, T., Koshihara, Y., Oda, H., Nakamura, K. and Tanaka, S. (2000) Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43, 259-269.   DOI
35 Udalova, I. A., Mantovani, A. and Feldmann, M. (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 472-485.   DOI
36 Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. and Waterfield, M. D. (1997) Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267-272.   DOI
37 Vitale, R. F. and Ribeiro Fde, A. (2007) The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Braz. J. Otorhinolaryngol. 73, 117-121.   DOI
38 Burmester, G. R., Stuhlmuller, B., Keyszer, G. and Kinne, R. W. (1997) Mononuclear phagocytes and rheumatoid synovitis. Mastermind or workhorse in arthritis? Arthritis Rheum. 40, 5-18.   DOI
39 Braccini, L., Ciraolo, E., Campa, C. C., Perino, A., Longo, D. L., Tibolla, G., Pregnolato, M., Cao, Y., Tassone, B., Damilano, F., Laffargue, M., Calautti, E., Falasca, M., Norata, G. D., Backer, J. M. and Hirsch, E. (2015) PI3K-C2gamma is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun. 6, 7400.   DOI
40 Brennan, F. M., Maini, R. N. and Feldmann, M. (1998) Role of proinflammatory cytokines in rheumatoid arthritis. Springer Semin. Immunopathol. 20, 133-147.   DOI
41 Foster, F. M., Traer, C. J., Abraham, S. M. and Fry, M. J. (2003) The phosphoinositide (PI) 3-kinase family. J. Cell Sci. 116, 3037-3040.   DOI
42 Camps, M., Ruckle, T., Ji, H., Ardissone, V., Rintelen, F., Shaw, J., Ferrandi, C., Chabert, C., Gillieron, C., Francon, B., Martin, T., Gretener, D., Perrin, D., Leroy, D., Vitte, P. A., Hirsch, E., Wymann, M. P., Cirillo, R., Schwarz, M. K. and Rommel, C. (2005) Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med. 11, 936-943.   DOI
43 Clavel, C., Ceccato, L., Anquetil, F., Serre, G. and Sebbag, M. (2016) Among human macrophages polarised to different phenotypes, the M-CSF-oriented cells present the highest pro-inflammatory response to the rheumatoid arthritis-specific immune complexes containing ACPA. Ann. Rheum. Dis. 75, 2184-2191.   DOI
44 Curtis, M. J., Bond, R. A., Spina, D., Ahluwalia, A., Alexander, S. P., Giembycz, M. A., Gilchrist, A., Hoyer, D., Insel, P. A., Izzo, A. A., Lawrence, A. J., MacEwan, D. J., Moon, L. D., Wonnacott, S., Weston, A. H. and McGrath, J. C. (2015) Experimental design and analysis and their reporting: new guidance for publication in BJP. Br. J. Pharmacol. 172, 3461-3471.   DOI
45 Del Prete, A., Vermi, W., Dander, E., Otero, K., Barberis, L., Luini, W., Bernasconi, S., Sironi, M., Santoro, A., Garlanda, C., Facchetti, F., Wymann, M. P., Vecchi, A., Hirsch, E., Mantovani, A. and Sozzani, S. (2004) Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J. 23, 3505-3515.   DOI
46 Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80, 269-278.   DOI
47 Yu, J., Wjasow, C. and Backer, J. M. (1998) Regulation of the p85/p110alpha phosphatidylinositol 3'-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J. Biol. Chem. 273, 30199-30203.   DOI
48 Wetzker, R. and Rommel, C. (2004) Phosphoinositide 3-kinases as targets for therapeutic intervention. Curr. Pharm. Des. 10, 1915-1922.   DOI
49 Wymann, M. P. and Pirola, L. (1998) Structure and function of phosphoinositide 3-kinases. Biochim. Biophys. Acta 1436, 127-150.   DOI
50 Yokota, K., Sato, K., Miyazaki, T., Kitaura, H., Kayama, H., Miyoshi, F., Araki, Y., Akiyama, Y., Takeda, K. and Mimura, T. (2014) Combination of tumor necrosis factor ${\alpha}$ and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol. 66, 121-129.   DOI
51 Yu, W., Sun, X., Tang, H., Tao, Y. and Dai, Z. (2010) Inhibition of class II phosphoinositide 3-kinase gamma expression by p185(Bcr-Abl) contributes to impaired chemotaxis and aberrant homing of leukemic cells. Leuk. Lymphoma 51, 1098-1107.   DOI
52 Zheng, Y., Sun, L., Jiang, T., Zhang, D., He, D. and Nie, H. (2014) TNF alpha promotes Th17 cell differentiation through IL-6 and IL-1beta produced by monocytes in rheumatoid arthritis. J. Immunol. Res. 2014, 385352.   DOI
53 Haringman, J. J., Gerlag, D. M., Zwinderman, A. H., Smeets, T. J., Kraan, M. C., Baeten, D., McInnes, I. B., Bresnihan, B. and Tak, P. P. (2005) Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834-838.   DOI
54 Freitag, A., Prajwal, P., Shymanets, A., Harteneck, C., Nurnberg, B., Schachtele, C., Kubbutat, M., Totzke, F. and Laufer, S. A. (2015) Development of first lead structures for phosphoinositide 3-kinase-C2gamma inhibitors. J. Med. Chem. 58, 212-221.   DOI
55 Frisell, T., Baecklund, E., Bengtsson, K., Di Giuseppe, D., Forsbladd'Elia, H. and Askling, J.; ARTIS Study group (2018) Patient characteristics influence the choice of biological drug in RA, and will make non-TNFi biologics appear more harmful than TNFi biologics. Ann. Rheum. Dis. 77, 650-657.   DOI
56 Gillespie, J., Savic, S., Wong, C., Hempshall, A., Inman, M., Emery, P., Grigg, R. and McDermott, M. F. (2012) Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum. 64, 418-422.   DOI
57 Weitzmann, M. N., Cenci, S., Rifas, L., Brown, C. and Pacifici, R. (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96, 1873-1878.   DOI