Browse > Article
http://dx.doi.org/10.9708/jksci.2018.23.10.135

Attenuation of Anemia by Relmα in LPS-Induced Inflammatory Response  

Lee, Mi-Ran (Dept. of Biomedical Laboratory Science, Jungwon University)
Abstract
In this paper, we propose to evaluate the effect of resistin-like molecule alpha ($Relm{\alpha}$) on the progression of anemia of inflammation. Anemia of inflammation is a common feature of inflammatory disorders, including chronic kidney disease, infections, and rheumatoid arthritis. $Relm{\alpha}$ is highly up-regulated in various inflammatory states, especially those involving asthma, intestinal inflammation, and parasitic diseases, and regulates the pathogenesis of those diseases. However, the role of $Relm{\alpha}$ in anemia of inflammation is unknown. To explore the roles of $Relm{\alpha}$ in anemia of inflammation in vivo, we generated mouse model of the disease by injecting 0.25 mg/kg lipopolysaccharides (LPS) intraperitoneally into $Relm{\alpha}-deficient$ and wild-type (WT) mice daily for 10 days. Research data was expressed as differences between LPS-treated $Relm{\alpha}-deficient$ and WT mice by a two-tailed non-parametric Mann-Whitney U-test using GraphPad Instat program. The results of the study are as follows: LPS-treated $Relm{\alpha}-deficient$ mice had significantly (p<0.05) lower hemoglobin contents, hematocrit levels and red blood cell indices including mean corpuscular volume, mean corpuscular hemoglobin than WT controls. This decrease was accompanied by significant (p<0.05) increase in total white blood cell and monocyte counts in the blood. However, there was no significant difference in mRNA levels of hepatic hepcidin and renal erythropoietin between the two animal groups. Taken together, these results indicates that $Relm{\alpha}$ deficiency exacerbates the anemia by increasing inflammation, suggesting therapeutic value of $Relm{\alpha}$ in the treatment of anemia of inflammation.
Keywords
Resistin-like molecule alpha; Anemia of inflammation; Lipopolysaccharide; Red blood cell; Hemoglobin; Hepcidin; Erythropoietin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Mavi, R. Niranjan, P. Dutt, A. Zaidi, J. S. Shukla, T. Korfhagen, and A. Mishra, “Allergen-induced resistin-like molecule-${\alpha}$ promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis,” Am J Physiol Gastrointest Liver Physiol, Vol. 309, No. 4, pp. G281, Aug. 2015.   DOI
2 J. T. Pesce, T. R. Ramalingam, M. S. Wilson, M. M. Mentink-Kane, R. W. Thompson, A. W. Cheever, J. F. Urban, Jr., and T. A. Wynn, “Retnla (relmalpha/fizz1) suppresses helminth-induced Th2- type immunity,” PLoS pathogens, Vol. 5, No. 4, pp. e1000393, Apr. 2009.   DOI
3 M. R. Lee, C. J. Lim, Y. H. Lee, J. G. Park, S. K. Sonn, M. N. Lee, I. H. Jung, S. J. Jeong, S. Jeon, M. Lee, K. S. Oh, Y. Yang, J. B. Kim, H. S. Choi, W. Jeong, T. S. Jeong, W. K. Yoon, H. C. Kim, J. H. Choi, and G. T. Oh, "The adipokine Retnla modulates cholesterol homeostasis in hyperlipidemic mice," Nature communications, Vol. 5, pp. 4410, Jul. 2014.   DOI
4 M. R. Lee, D. Shim, J. Yoon, H. S. Jang, S. W. Oh, S. H. Suh, J. H. Choi, and G. T. Oh, “Retnla overexpression attenuates allergic inflammation of the airway,” PloS one, Vol. 9, No. 11, pp. e112666, Nov. 2014.   DOI
5 M. Triantafilou and K. Triantafilou, “The dynamics of LPS recognition: complex orchestration of multiple receptors,” J Endotoxin Res, Vol. 11, No. 1, pp. 5-11, 2005.   DOI
6 T. Yokochi, "A new experimental murine model for lipopolysaccharide-mediated lethal shock with lung injury," Innate Immun, Vol. 18 No. 2, pp. 364-370, Apr. 2012.   DOI
7 H. Z. Wang, Y. X. He, C. J. Yang, W. Zhou, and C. G. Zou, “Hepcidin is regulated during blood-stage malaria and plays a protective role in malaria infection,” J Immunol, Vol. 187, No. 12, pp. 6410-6416, Dec. 2011.   DOI
8 C. M. Witmer, “Hematologic manifestations of systemic disease (including iron deficiency, anemia of inflammation and DIC),” Pediatr Clin North Am, Vol. 60, No. 6, pp. 1337-1348, Oct. 2013.   DOI
9 N. J. Kassebaum, R. Jasrasaria, M. Naghavi, S. K. Wulf, N. Johns, R. Lozano, M. Regan, D. Weatherall, D. P. Chou, T. P. Eisele, S. R. Flaxman, R. L. Pullan, S. J. Brooker, and C. J. Murray, “A systematic analysis of global anemia burden from 1990 to 2010,” Blood, Vol. 123, No. 5, pp. 615-624, Jan. 2014.   DOI
10 C. Madeddu, G. Gramignano, G. Astara, R. Demontis, E. Sanna, V. Atzeni, and A. Maccio, "Pathogenesis and Treatment Options of Cancer Related Anemia: Perspective for a Targeted Mechanism-Based Approach," Front Physiol, Vol. 9, pp. 1294, Sep. 2018.   DOI
11 T. Ganz, “Systemic iron homeostasis,” Physiol Rev, Vol. 93, No. 4, pp. 1721-1741, Oct. 2013.   DOI
12 N. I. Solomakhina, E. S. Nakhodnova, and Y. N. Belenkov, "[Anemia of chronic disease and iron deficiency anemia: Comparative characteristics of ferrokinetic parameters and their relationship with inflammation in late middle-aged and elderly patients with CHF]," Kardiologiia (S8), pp. 58-64, Aug. 2018.
13 P. Huang, J. Wang, X. Lin, F. F. Yang, and J. H. Tan, "Effects of IL-10 on iron metabolism in LPS-induced inflammatory mice via modulating hepcidin expression," Eur Rev Med Pharmacol Sci, Vol. 21, No. 15, pp. 3469-3475, Aug. 2017.
14 L. Kautz, G. Jung, E. V. Valore, S. Rivella, E. Nemeth, and T. Ganz, “Identification of erythroferrone as an erythroid regulator of iron metabolism,” Nat Genet, Vol. 46, No. 7, pp. 678-684, Jul. 2014.   DOI
15 T. Ganz, “Molecular pathogenesis of anemia of chronic disease,” Pediatric blood & cancer, Vol. 46, No. 5, pp. 554-557, May 2006.   DOI
16 A. Krstic, J. Kocic, V. Ilic, S. Mojsilovic, I. Okic-Dordevic, D. Trivanovic, J. F. Santibanez, G. Jovcic, and D. Bugarski, "Effects of IL-17 on erythroid progenitors growth: involvement of MAPKs and GATA transcription factors," J Biol Regul Homeost Agents, Vol. 26, No. 4, pp. 641-652, Oc.t-Dec. 2012.
17 G. Weiss and L. T. Goodnough, “Anemia of chronic disease,” N Engl J Med, Vol. 352, No. 10, pp. 1011-1023, Mar. 2005.   DOI
18 C. S. Kim, "Anemia of Chronic Disease," J Korean Med Assoc, Vol. 49, No. 10, pp. 920-926, 2006   DOI
19 E. Nemeth, S. Rivera, V. Gabayan, C. Keller, S. Taudorf, B. K. Pedersen, and T. Ganz, “IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin,” The Journal of clinical investigation, Vol. 113, No. 9, pp. 1271-1276, May 2004.   DOI
20 I. N. Holcomb, R. C. Kabakoff, B. Chan, T. W. Baker, A. Gurney, W. Henzel, C. Nelson, H. B. Lowman, B. D. Wright, N. J. Skelton, G. D. Frantz, D. B. Tumas, F. V. Peale, Jr., D. L. Shelton, and C. C. Hebert, “FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family,” The EMBO journal, Vol. 19, No. 15, pp. 4046-4055, Aug, 2000.   DOI
21 M. G. Nair, D. W. Cochrane, and J. E. Allen, “Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro,” Immunol Lett, Vol. 85, No. 2, pp. 173-180, Jan, 2003.   DOI
22 K. Yamaji-Kegan, Q. Su, D. J. Angelini, A. C. Myers, C. Cheadle, and R. A. Johns, “Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL-4-dependent mechanism,” J Immunol, Vol. 185, No. 9, pp. 5539-5548, Nov. 2010.   DOI
23 A. Munitz, A. Waddell, L. Seidu, E. T. Cole, R. Ahrens, S. P. Hogan, and M. E. Rothenberg, “Resistin-like molecule alpha enhances myeloid cell activation and promotes colitis,” J Allergy Clin Immunol, Vol. 122, No. 6, pp. 1200-1207 e1201, Dec. 2008.   DOI
24 A. Munitz, L. Seidu, E. T. Cole, R. Ahrens, S. P. Hogan, and M. E. Rothenberg, “Resistin-like molecule alpha decreases glucose tolerance during intestinal inflammation,” J Immunol, Vol. 182, No. 4, pp. 2357-2363, Feb. 2009.   DOI
25 L. C. Osborne, K. L. Joyce, T. Alenghat, G. F. Sonnenberg, P. R. Giacomin, Y. Du, K. S. Bergstrom, B. A. Vallance, and M. G. Nair, “Resistin-like molecule alpha promotes pathogenic Th17 cell responses and bacterial-induced intestinal inflammation,” J Immunol, Vol. 190, No. 5, pp. 2292-2300, Mar. 2013.   DOI