• Title/Summary/Keyword: LOQ

Search Result 468, Processing Time 0.029 seconds

Development of a Validated Determination of Methylsulfonylmethane in Dietary Supplement by Gas Chromatography (기체크로마토그래피를 이용한 식이보충제에서 메틸설포닐메탄의 검증된 분석법 개발)

  • Park, Sang-Wook;Lee, Wonjae
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • The convenient determination of methylsulfonylmethane (MSM) for a commercially available dietary supplement was developed using gas chromatography (GC)-flame ionization detector (FID). Chromatography was performed on a capillary column ($0.32mm\;I.D{\times}30m$, $0.25{\mu}m$) coated with dimethylpolysiloxane using diethylene glycol methyl ether as an internal standard. The performance characteristics of GC were evaluated in terms of selectivity, linearity, precision, accuracy, recovery, limit of detection (LOD) and limit of quantification (LOQ). The calibration curve was highly linear (the coefficient of determination: 0.9979) within the concentration range of $10.0{\sim}800.0{\mu}g/mL$ for MSM. The recoveries for three fortified concentrations were 96.7~97.1%, 96.6~97.3% and 96.8~97.2%, respectively. The LOD and LOQ of the method were $0.29{\mu}g/mL$ and $0.97{\mu}g/mL$, respectively. All obtained results were acceptable according to the guidelines of the Association of Official Analytical Chemists for dietary supplements. Thus, the validated analytical method using the GC-FID system is suitable for the determination of MSM in dietary supplement formulations for quality control.

Validation and measurement uncertainty of HPLC-UV method for quercetin quantification in various foods

  • Seo, Eunbin;Lim, Suji;Yun, Choong-In;Shin, Jae-Wook;Kim, Young-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.682-687
    • /
    • 2021
  • The purpose of this study was to validate a high-performance liquid chromatography (HPLC) method for the quantitative analysis of quercetin in various foods. The method was based on HPLC-UV (360 nm). The method was validated using candy, beverage, and sausage which were tested for specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy, and the measurement uncertainty was assessed. Matrix-matched calibration was also applied. The calibration curves (0.5-50 mg/L) showed good linearity (r2≥0.9998). LOD and LOQ ranged from 0.15 to 0.31 mg/kg and from 0.44 to 0.93 mg/kg, respectively. The average accuracy and precision at 0.5, 2.5, and 10 mg/kg ranged from 84.3 to 102.0% and 0.7 to 3.0 relative standard deviation (RSD%), respectively. This study confirmed the applicability of the proposed method by applying it to commercial products, such as teas and beverages. Thus, the proposed analytical method is suitable for quantifying quercetin in various foods.

Establishment of analytical methods for allergenic compounds in mouthwashes and sanitary napkins by ultra-high-performance liquid chromatography with tandem mass spectrometry

  • Hee-Jung Sim;Hee-Jin Jeong;Yeong-In Lee;Yu-Jin Cho;Seung-Hoon Baek;Jong-Hwan Kim
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Analytical methods for detecting atranol, chloroatranol, evernic acid, (+)-usnic acid, and atranorin in sanitary napkins and mouthwashes were developed using ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). UHPLC-MS/MS conditions were optimized for rapid, sensitive, and simultaneous analysis of the five allergenic compounds. The methods were validated by assessing their specificity, matrix effects, limit of detection (LOD), limit of quantification (LOQ), linearity, accuracy, and precision. Good linearity was achieved with a determination coefficient of ≥0.99. The LOD and LOQ were 2.1-9.8 and 6.4-29.6 ng/g for sanitary napkins and 0.29-0.48 and 0.87-1.45 ng/mL for mouthwashes, respectively. The accuracy and precision were within an acceptable range according to the criteria reported in the European SANTE/11813/2017 guidelines (70-120 % recovery, <20 % relative standard deviation). Therefore, these methods can be used to analyze atranol, chloroatranol, evernic acid, (+)-usnic acid, and atranorin in sanitary napkins and mouthwashes.

Validation, Measurement Uncertainty, and Determination of Bixin and Norbixin in Processed Foods of Animal Resources Distributed in Korea

  • Ga-Yeong Lee;Choong-In Yun;Juhee Cho;Young-Jun Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.949-960
    • /
    • 2023
  • This research aimed to validate a high-performance liquid chromatography method for the quantitative determination of bixin and norbixin in various foods. The Diode Array Detector (495 nm) technique was used. Method was validated for specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy, and the measurement uncertainty was assessed. The calibration curve showed excellent linearity (r2≥0.9999) over the tested concentration range of 0.2-25 mg/L. The LOD and LOQ were 0.03-0.11 and 0.02-0.05 mg/L for bixin and norbixin, respectively. The intra-and inter-day accuracies and precisions were 88.0±1.3-97.0±0.5% and 0.2%-2.6% relative SD (RSD) for bixin and 88.2±0.8-105.8±0.8% and 0.3%-2.7% RSD for norbixin, respectively. Inter-laboratory validation for accuracy and precision was conducted in three laboratories, and these results all met the AOAC guidelines. In addition, the relative expanded uncertainty (<22%) satisfied the CODEX recommendation. Furthermore, products distributed in Korea were monitored for annatto extracts using the proposed method to demonstrate its application. The developed analytical method is reliable for quantifying bixin and norbixin in various foods.

Simultaneous Determination and Monitoring of Bisphenols in River Water using Gas Chromatography-Mass Spectrometry (GC-MS 를 이용한 하천수 중 Bisphenol계 화합물의 동시분석 및 모니터링)

  • Kim, Jihyun;Choi, Jeong-Heui;Kang, Tae-Woo;Kang, Taegu;Hwang, Soon-Hong;Shim, Jae-Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.154-160
    • /
    • 2017
  • BACKGROUND:This study was carried out to establish an efficient sample preparation for the simultaneous determination of bisphenols (BPs) in river water samples using gas chromatography-mass spectrometry (GC-MS). Sample preparation was examined with conventional extraction methods, such as solid-phase extraction (SPE) and liquid-liquid extraction (LLE), and their efficiency was compared with validation results, including linearity of calibration curve, method detection limit (MDL), limit of quantification (LOQ), accuracy, and precision. METHODS AND RESULTS:The BPs (bisphenol A, BPA; bisphenol B, BPB; bisphenol C, BPC; bisphenol E, BPE; bisphenol F, BPF; bisphenol S, BPS) were analyzed using GC-MS. The range of MDLs by SPE and LLE methods was $0.0005{\sim}0.0234{\mu}g/L$ and $0.0037{\sim}0.2034{\mu}g/L$, and that of LOQs was $0.0015{\sim}0.0744{\mu}g/L$ and $0.0117{\sim}0.6477{\mu}g/L$, respectively. The calibration curve obtained from standard solution of $0.004{\sim}4.0{\mu}g/L$ (SPE) and $0.016{\sim}16{\mu}g/L$ (LLE) showed good linearity with $r^2$ value of 0.9969 over. Accuracy was 93.2~108% and 97.4~120%, and precision was 1.7~4.6% and 0.7~6.5%, respectively. The values of MDL and LOQ resulted from the SPE method were higher than those from the LLE method, particularly those values of BPA were highest among the BPs. Based on the results, the SPE method was applied to determine the BPs in river water samples. Water samples were collected from mainstream, tributary and sewage wastewater treatment plants (SWTPs) in the Yeongsan river basin. The concentration of BPB, BPC, BPE, BPF and BPS were not detected in all sites, whereas BPA was ranged $0.0095{\sim}0.2583{\mu}g/L$, which was $0.0166{\sim}0.0810{\mu}g/L$ for mainstreams, $0.0095{\sim}0.2583{\mu}g/L$ for tributaries, $0.0352{\sim}0.1217{\mu}g/L$ for SWTPs. CONCLUSION: From these results, the SPE method was very effective for the simultaneous determination of BPs in river water samples using GC-MS. We provided that it is a convenient, reliable and sensitive method enough to monitor and understand the fate of the BPs in aquatic ecosystems.

Development of a Simultaneous Analytical Method for Determination of Trinexapac-ethyl and Trinexapac in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 식물생장조절제 Trinexapac-ethyl과 대사산물 Trinexapac의 동시분석법 개발)

  • Jang, Jin;Kim, Heejung;Ko, Ah-Young;Lee, Eun-Hyang;Ju, Yunji;Chang, Moon-Ik;Rhee, Gyu-Seek;Suh, Saejung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.318-327
    • /
    • 2015
  • BACKGROUND: Trinexapac-ethyl is a plant growth regulator (PGR) that inhibits the biosynthesis of plant growth hormone (gibberellin). It is used for the prevention of lodging, increasing yields of cereals, and reducing mowing of turf. The experiment was conducted to establish a determination method for trinexapac-ethyl and its metabolites trinexapac in agricultural products using LC-MS/MS.METHODS AND RESULTS: Trinexapac-ethyl and trinexapac were extracted from agricultural products with methanol/ distilled water and the extract was partitioned with dichloromethane and then detected by LC-MS/MS. Limit of detection(LOD) was 0.003 mg/kg and limit of quantification(LOQ) was 0.01 mg/kg, respectively. Matrix matched calibration curves were linear over the calibration ranges (0.01-1.0 mg/L) for all the analytes into blank extract withr2> 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, 50LOQ,n=5). Recoveries of trinexapacethyl and trinexapac were within the range of 73.6-106.9%, 72.7-99.2%, respectively. The relative standard deviations (RSDs) were less than 9.0%. All values were consistent with the criteria ranges requested in the CODEX guideline(CAC/GL 40, 2003).CONCLUSION: The proposed analytical method was accurate, effective and sensitive for trinexapac-ethyl and trinexapac determination and it can be used to as an official method in Korea.

Development of Analytical Method for Kasugamycin in Agricultural Products using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Kasugamycin 시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.235-241
    • /
    • 2019
  • An analytical method was developed for the determination of an antibiotic fungicide, kasugamycin, in agricultural products (hulled rice, potato, soybean, mandarin and green pepper) using liquid chromatographytandem mass spectrometry (LC-MS/MS). Samples were extracted with methanol adjusted to pH 13 using 1 N sodium hydroxide, and purified with a HLB (hydrophilic lipophilic balance) cartridge. Linearity of a matrix-matched calibration curve using seven concentration levels, from 0.001 to 0.1 mg/kg, was excellent with a correlation coefficient ($R^2$) of more than 0.9998. The limits of detection (LOD) and quantification (LOQ) of instrument were 0.0005 and $0.001{\mu}g/mL$, respectively, and the LOQ of analytical method calculated as 0.01 mg/kg. The average recoveries at three spiking levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) were in the range of 71.2~95.4% with relative standard deviation of less than 12.1%. The developed method was simple and all optimized results was satisfied with the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. The present study could be served as a reference for the establishment of maximum residue limits (MRL) of kasugamycin and be used as basic data for safety management relative to kasugamycin residues in imported and domestic agricultural products.

Residual evaluation of ethyl formate in soil and crops after fumigation in green house (에틸포메이트의 하우스 농작물 훈증처리 후 토양 및 작물 중 잔류양상)

  • Hwang-Ju Jeon;Kyeongnam Kim;Chaeeun Kim;Yerin Cho;Tae-Hyung Kwon;Byung-Ho Lee;Sung-Eun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.316-324
    • /
    • 2022
  • Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection(LOD) of the method was 100ng g-1 and the limit of quantitation(LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.

Establishment of Analytical Method for Cyprodinil Residue In Apple, Mandarin, Korean Cabbage and Green Pepper (HPLC를 이용한 사과, 감귤, 배추, 고추 중 살균제 Cyprodinil의 분석법 확립)

  • Lee, Hye-Ri;Riu, Myoung-Joo;Kim, Eun-Hye;Moon, Joon-Kwan;Do, Jung-A;Oh, Jae-Ho;Kwon, Ki-Sung;Im, Moo-Hyeog;Lee, Young-Deuk;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.371-380
    • /
    • 2010
  • This study was performed to develop a precise single residue analytical method of fungicide cyprodinil in representative crops for using as general residue analytical methods which could be applied to most of crops. Apple, mandarin, Korean cabbage and green pepper were selected as representative crops, and they were macerated, extracted with acetonitrile, concentrated and partitioned with n-hexane. Then the extracts were concentrated and cleaned-up through silica gel column with ethyl acetate:n-hexane (15:85, v/v) before concentration and analysis with HPLC. LOQ (limit of quantitation) of cyprodinil was 5 ng (S/N>10) and MQL (method qnantitation limit) was 0.05 mg/kg. Recoveries were measured at three fortification levels (MQL, 10MQL and 100MQL) on crop samples and ranged from 82.0 to 108.2% and coefficients of variation were less than 10% regardless of sample type.

Establishment of Analytical Method for Fenhexamid Residue in Korean Cabbage, Apple, Mandarin and Green Pepper (HPLC를 이용한 배추, 사과, 감귤, 고추 중 살균제 Fenhexamid의 정밀 분석법 확립)

  • Lee, Hye-Ri;Riu, Myoung-Joo;Park, Hee-Won;Na, Ye-Rim;Song, Hyuk-Hwan;Keum, Young-Soo;Zhu, Yongzhe;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.223-231
    • /
    • 2009
  • This study was performed to develop a precise single residue analytical method of fungicide fenhexamid in representative crops for general residue analytical method which could be applied to most of crops. Korean cabbage, mandarin, apple and green pepper were selected, macerated, extracted with acetone, concentrated and partitioned with dichloromethane. Then the extracts were concentrated and cleaned-up through Florisil column with ethyl acetate/0.1% acetic acid in hexane [15:85, (v/v)] before concentration and analysis with HPLC. LOQ (Limit of Quantitation) of fenhexamid was 1 ng (S/N>10) and MQL (Method Quantitative Limit) was 0.01 mg/kg. Recoveries were measured at two fortification levels (10 MQL and 50 MQL) on crop samples and ranged from 85.2% to 94.8% (mean recoveries) and coefficients of variation were <10% regardless of sample type.