• 제목/요약/키워드: LMS (Least Mean Square)

검색결과 288건 처리시간 0.027초

평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델 (Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm)

  • 안찬식;오상엽
    • 디지털융복합연구
    • /
    • 제10권10호
    • /
    • pp.277-282
    • /
    • 2012
  • 음성 인식 시스템은 다양하게 변화하는 환경 잡음에 빠르게 적응할 수 없어서 인식 성능을 저하시키는 요인이 된다. 본 논문에서는 평균 예측 LMS 알고리즘을 이용하여 반향 잡음에 강인하게 하는 방법으로 HMM 학습 모델을 구성하는 방법을 제안하였으며, 변화하는 반향 잡음에 적응하도록 HMM 학습 모델을 구성하여 인식 성능을 평가하였다. 실험 결과 변화하는 환경 잡음을 제거하여 얻은 음성의 SNR은 평균 3.1dB이 향상되었고 인식률은 3.9% 향상되었다.

제한 Filtered-x LMS 알고리즘을 이용한 능동 소음제어 (Active Noise Control using Constrained Filtered-x LMS Algorithm)

  • 나희승;박영진
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.485-493
    • /
    • 1998
  • Many of the adaptive noise control systems utilize a form of the least mean square (LMS) algorithms. In the active control of noise, it is common practice to locate an error microphone far from the control source to avoid the near-field effects by evanescent waves. Such a distance between the control source and the error microphone makes a certain level of time-delay inevitable and, hence, may yield undesirable effects on the convergence properties of control algorithms such as filtered-x LMS. This paper discusses the dependence of the convergence rate on the acoustic error path in these popularalgorithms and introduces new algorithms which increase the convergence region regardless of the time-delay in the acoustic error path. Performances of the new LMS algorithms are presented in comparison with those by the conventional algorithms based on computer simulations and experiments.

  • PDF

LMS 알고리즘의 2차원 적응 필터에의 적용에 관한 연구 (Syudy on the Application of LMS Algorithm to the Two Dimensional Adaptive Filter)

  • 신연기;김춘성
    • 대한전자공학회논문지
    • /
    • 제21권2호
    • /
    • pp.29-35
    • /
    • 1984
  • LMS(least mean Square) 알고리즘은 그 간편성에 의하여 적응 필터의 대표적인 알고리즘으로 되고 있다. 본 논문에서는 잘 알려진 1차원 LMS 원응 필터를 2차원 필터로 광장시킬 수 있음을 보였으며, 필터의 목산 속도 양선방안 및 2차원 적응 필터에서 발생하는 몇 가지 문제점들에 관하여 고찰하였다.

  • PDF

Adaptive Noise Reduction on the Frequency Domain using the Sign Algorithm.

  • Lee, Jae-Kyung;Yoon, Dal-Hwan;Min, Seung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.57-60
    • /
    • 2003
  • We have proposed the adaptive noise reduction algorithm using the MDFT. The algorithm proposed use the linear prediction coefficients of the AR method based on Sign algorithm that is the modified LMS instead of the least mean square(LMS). The signals with a random noise tracking performance are examined through computer simulations and confirmed that the high speed adaptive noise reduction processing system is realized with rapid convergence.

  • PDF

적응격자 알고리즘을 이용한 대기오염 예측에 관한 연구 (A Study on Air Pollution Prediction Using Adaptive Lattice Altorithm)

  • 홍기용;김신도;김성환
    • 한국대기환경학회지
    • /
    • 제2권3호
    • /
    • pp.52-56
    • /
    • 1986
  • In this paper a adaptive LMS(least mean-square) lattice predictor, which is composed of the adaptive lattice algorithm and LMS algorithm by Widrow-Hopf, is used to predict the future air pollution of the extraordinary levels in the environmental system. This prediction algorithm is applied to the one-step forward prediction of atmospheric CO concentration by using real observed data. Computer simulation proves that the power in the forward error sequences decreases as the number of stages in the lattice is increased.

  • PDF

신경망필터를 이용한 음질향상 (Speech Enhancement using the Neural Network Filter)

  • 김종우;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF

LMS를 이용한 헤테로다인 레이저 간섭계 비선형성 보정 (Nonlinearlity Compensation of Heterodyne laser interferometer based on LMS)

  • 정필중;이우람;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.283-284
    • /
    • 2007
  • In this paper we introduce a compensation of nonlinearity Heterodyne laser interferometer. The Laser Interferometer is used for length measurement in various industries. However, it has nonlinearity error caused by the imperfect optical equipment. This acts as an obstacle in the measurement improvement. We propose an adaptive error compensation using least mean square(LMS) to improve precision.

  • PDF

Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법 (A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms)

  • Daewon Kim
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.15-26
    • /
    • 2003
  • 초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 그리고 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 많은 초음파 신호처리와 신호분류의 방법들이 제기 되었는데 그 중 가장 널리 쓰이는 방법은 신호들의 특징 공간상에서 그 특정의 성분들을 추출해내고 그 후 신경망 네트웍을 통한 분류 방법을 이용하여 초음파 신호들을 구별해 내는 방법이다. 이 논문은 기존의 신호 분류 체계와는 다른 대체 신호 분류법을 제시하고 있는데 이것은 최소 평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지되어진 초음파 비파괴 검사 신호 (ultrasonic nondestructive evaluation signal) 을 분류해내는데 쓰일 수가 있다 이 초음파 비파괴 검사 신호는 튜브내의 흠집이나 틈새로부터 감지되어진 신호일수도 있고 또는 튜브내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었고 여기서 나온 결과가 정리, 분석되었다 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용한 접근법으로 얻어진 결과가 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 정리, 분류되었고 적절한 분류 효과를 보인 결과가 이 논문에 제시되었다.

  • PDF

신경회로망을 이용한 영상복원용 적응형 일반스택 최적화 필터의 설계 및 구현 (Design and Implementation of Optimal Adaptive Generalized Stack Filter for Image Restoration Using Neural Networks)

  • 문병진;김광희;이배호
    • 전자공학회논문지S
    • /
    • 제36S권7호
    • /
    • pp.81-89
    • /
    • 1999
  • 통신에 의한 전송 영상은 잡음이나 번짐 또는 일그러짐 등을 항상 포함한다. 본 논문에서는 적응형 일반스텍 최적화 필터(OAGSF: optimal adaptive generalized stack filter)라는 영상복원 공간 필터를 제안하였는데, 이는 영상의 복원에서 잡음 제거율과 외곽선 정보의 보존률의 증가을 위해 신경회로맘의 역전파 학습 알고리즘의 가중치 학습 알고리즘을 기반으로 적응형 일반스택 필터(AGSF)를 최적화 시킨 것이다. 적응형 일반스택 필터는 일반스택 필터(GSF: generalized stack filter)와 적응형 다단계 메디안 필터(AMMF; adaptive multistage median filter)로 구분하고, 일반스텍 필터는 스택 필너치 기능을 보완한것이고, 적응형 다단계 메디안 필터는 메디안 필터의 외곽선 정보 보존률을 높인 것이다. 신경회로망의 역전파 학습 알고리즘에 대하여 두가지 가중치 학습 알고리즘인 최소평균절대 (LMA:Least Mean Absolute) 알고리즘과 최소평균자승(LMS: Least Mean Square) 알고리즘을 이용하여 적응형 일반스택 필터를 최적화하였다. 본 논문에서 제시한 신경회로망을 이용한 영상복원 공간필터에 대해 실험결과를 통해 제시하였다.

  • PDF