• Title/Summary/Keyword: LMIS

검색결과 244건 처리시간 0.021초

Multirate Digital Control for Fuzzy Systems: LMI-Based Design and Stability Analysis

  • Kim Do-Wan;Park Jin-Bae;Joo Young-Hoon;Kim Sung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.506-515
    • /
    • 2006
  • This paper studies an intelligent digital control for nonlinear systems with multirate sampling. It is worth noting that the multirate control design is addressed for a given nonlinear system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the digital control system can be deduced from that of the solution of its discretized versions. An example is provided for showing the feasibility of the proposed method.

일반화된 고유치 문제를 이용한 시변 섭동의 안정 범위 (A Stability Region of Time-varying Perturbations by Using Generalized Eigenvalue Problem)

  • 이달호;한형석
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.901-906
    • /
    • 2005
  • The stability robustness problem of continuous linear systems with nominal and delayed time-varying perturbations is considered. In the previous results, the entire bound was derived only for the overall perturbations without separation of the perturbations. In this paper, the sufficient condition for stability of the system with two perturbations, which are nominal and delayed, is expressed as linear matrix inequalities(LMIs). The corresponding stability bounds fer those two perturbations are determined by LMI(Linear Matrix Inequality)-based generalized eigenvalue problem. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed.

정합조건을 만족시키지 않는 불확실한 시스템을 위한 선형 슬라이딩 평면의 LMI 매개변수화 (LMI Parameterization of Lineny Sliding Surfaces for Mismatched Uncertain Systems)

  • 이재관;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.907-912
    • /
    • 2005
  • In this paper, we consider the problem of designing sliding surfaces fur a class of dynamic systems with mismatched uncertainties in the state space model. In terms of LMIs, we give necessary and sufficient conditions fir the existence of a linear sliding surface such that the reduced order sliding mode dynamics is asymptotically stable and completely independent of uncertainties. We parameterize all such linear sliding surfaces by using the solution to the given LMI conditions. And, we consider the problem of designing linear sliding surfaces guaranteeing pole placement constraints or $H_2/H_infty$ performances. Finally, we give a design example in order to show the effectiveness of our method.

An LMI Approach to Robust Congestion Control of ATM Networks

  • Lin Jun;Xie Lihua;Zhang Huanshui
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.53-62
    • /
    • 2006
  • In this paper, ATM network congestion control with explicit rate feedback is considered. In ATM networks, delays commonly appear in data transmission and have to be considered in congestion control design. In this paper, a bounded single round delay on the return path is considered. Our objective is to design an explicit rate feedback control that achieves a robust optimal $H_2$ performance regardless of the bounded time-varying delays. An optimization approach in terms of linear matrix inequalities (LMIs) is given. Saturation in source rate and queue buffer is also taken into consideration in the proposed design. Simulations for the cases of single source and multiple sources are presented to demonstrate the effectiveness of the design.

Periodic Sampled-Data Control for Fuzzy Systems;Intelligent Digital Redesign Approach

  • Kim, D.W.;Joo, Y.H.;Park, J.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1492-1495
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed; and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system; but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

스마트 스페이스를 위한 난방, 환기 및 공기조화 시스템의 지능형 디지털 제어 (Intelligent Digital Control of Heating, Ventilating, and Air Conditioning System for Smart Space)

  • 김도완;박진배;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.365-370
    • /
    • 2007
  • This paper studies an automation problem of a heating, a ventilating, and an air conditioning (HVAC) for the development of smart space. The HVAC system is described by the fuzzy system for the stability analysis and the controller design. The linear matrix inequalities (LMIs) conditions are derived for the stabilization problem of the closed-loop system under the analog control. Also, it is required to digitally redesign the pre-designed the analog HVAC control system in order to accomplish the remote control via web. It is shown the this digital redesign problem can be converted to the convex optimization problem with the LMI constraints. An example is provided to show the effectiveness of the proposed method.

Robust D-Stability and D-Stabilization of Dynamic Interval Systems

  • Mao, Wei-Jie;Chu, Jian
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.594-600
    • /
    • 2007
  • A sufficient condition for the robust D-stability of dynamic interval systems is proposed in this paper. This D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of matrix inequalities defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as previous results. This condition is also extended to the robust D-stabilization problem of dynamic interval systems, which supplies an effective synthesis procedure for any LMI D-region. The proposed conditions can be simplified to a set of LMIs, which can be solved by efficient interior point methods in polynomial time.

시간지연을 갖는 네트워크 제어 시스템의 지능형 제어기 설계 (Intelligent Controller for Networked Control Systems with Time-delay)

  • 배기선;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.139-144
    • /
    • 2011
  • We consider the stabilization problem for a class of networked control systems with random delays in the discrete-time domain. The controller-to-actuator and sensor-to-controller time-delays are modeled as two Markov chains, and the resulting closed-loop systems are Markovian jump nonlinear systems with two modes. The T-S (Takagi-Sugeno) fuzzy model is employed to represent a nonlinear system with Markovian jump parameters. The aim is to design a fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. The necessary and sufficient conditions on the existence of stabilizing fuzzy controllers are established in terms of LMIs (Linear Matrix Inequalities). It is shown that fuzzy controller gains are mode-dependent. Finally, a simulation example is presented to illustrate the effectiveness of the proposed design method.

시간 지연 시스템을 위한 가변 구조 제어기 설계 (Variable Structure Control Design for Time-Delay Systems)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1208-1211
    • /
    • 2010
  • We propose a variable structure control design method for a class of multivariable uncertain state-delayed systems which can be represented by polytopic models. In terms of LMIs, we derive a sufficient condition for the existence of a linear sliding surface guaranteeing the asymptotic stability of the sliding mode dynamics. We parameterize the sliding surface by using the solution of the LMI existence condition. We also give a switching feedback control strategy guaranteeing stable sliding mode. By using a numerical example, we show that our method supplements the existing results and it can be better than the existing results.

타카기-수게노 퍼지 시스템의 H 샘플치 제어 (H Sampled-Data Control of Takagi-Sugeno Fuzzy System)

  • 김도완
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1142-1146
    • /
    • 2014
  • This paper addresses on a $H_{\infty}$ sampled-data stabilization of a Takagi-Sugeno (T-S) fuzzy system. The sampled-data stabilization problem is formulated as a discrete-time stabilization one via a direct discrete-time design approach. It is shown that the sampled-data fuzzy control system is asymptotically stable whenever its exactly discretized model is asymptotically stable. Based on an exact discrete-time model, sufficient design conditions are derived in the format of linear matrix inequalities (LMIs). An example is provided to illustrate the effectiveness of the proposed methodology.