• 제목/요약/키워드: LMI theory

검색결과 56건 처리시간 0.028초

Damage propagation for aircraft structural analysis of composite materials

  • Hung, C.C.;Nguyen, T.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권2호
    • /
    • pp.149-167
    • /
    • 2022
  • A Modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. And we focus on the damage propagation for aircraft structural analysis of composite materials. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials.

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

LMI-based $H_{\infty}$ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Keh, Joong-Eup;Kim, In-Soo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.497-497
    • /
    • 2000
  • This paper is concerned with the design of LMI based H$_{\infty}$ controller for a line of sight(LOS) stabilization system. This system which is even linearized to analyse nonlinear characteristic has also a lot of uncertainties. In addition, the angular velocity disturbance from the vehicle's driving deteriorates the stabilized LOS, main purpose of this system. In case of fast driving, particularly, all components which are ignored and skipped to make mathematical modelling act as the uncertainties against this system. The robustness against these uncertainties has been also continuously demanded including the well tracking performance for the target. Therefore, this paper employed H$_{\infty}$ control theory to satisfy these problems and LMI method to make suitable controller with few constraints for this system. Although this system matrix doesn't have full rank, this method make it possible to design H$_{\infty}$ controller and deal with R and S matrices for reducing its order. Consequently, this paper shows that the re-analyses on the real disturbances are achieved and the proposed robust controller for them has better disturbance attenuation and tracking performance. This paper contributes the applicability of reduced order H$_{\infty}$ controller to real system by handling LMI..

  • PDF

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

LMI 방법을 이용한 방사형 인공위성 제어로직 설계 및 강건성 분석 (Radial Type Satellite Attitude Controller Design using LMI Method and Robustness Analysis)

  • 이승우
    • 한국항공우주학회지
    • /
    • 제43권11호
    • /
    • pp.998-1007
    • /
    • 2015
  • 방사형 인공위성 경우, 관성곱이 커서 단일 입 출력 가정이 불가능하기 때문에 고전적 제어기 설계방법을 사용하기 어렵다. 본 논문에서 현대 제어 이론인 $H_{\infty}$ 제어기 설계이론을 사용하여 방사형 인공위성의 자세 제어기 설계를 수행하였다. 설계 알고리즘으로 보다 안정적인 LMI 방법이 사용되었고, 설계 결과에 대한 안정성과 성능에 대한 강건성 해석을 위해 ${\mu}$-해석 방법이 적용되었다. 설계 결과, 일반적인 경우와 다르게 제어기가 포함되지 않은 개루프보다 제어기가 포함된 개루프의 cross-over frequency가 더 낮게 설계되는 것이 관측되었다. 즉 상대적으로 큰 관성곱 영향 때문에 단지 weighting 함수 조정으로 위성 기동성을 증가시키는데 한계가 있는 것으로 해석된다. ${\mu}$-해석을 위해 +/-5%의 관성모멘트 변화를 가정하였다. 안정성 및 성능에 대한 강건성 해석결과, +/-7% 관성모멘트 변화까지 시스템 안정성 및 성능이 보장됨이 확인되었고, 관성곱 변화보다 주관성모멘트 변화가 안정성 및 성능 저하에 더 영향을 주는 것으로 확인되었다.

유연한 로봇팔의 선단 위치 제어를 위한 강인한 제어기의 설계 (Robust Controller Design for Flexible Robot Arm Manipulator)

  • 신봉철;이형기;최연욱;안영주
    • 융합신호처리학회논문지
    • /
    • 제3권2호
    • /
    • pp.76-82
    • /
    • 2002
  • 본 연구는 유연한 로봇팔의 선단 위치를 제어하기 위한 강인한 제어기의 설계하고 이것의 효과를 실험을 통하여 확인하는 데 있다. 이를 위해 먼저 유연한 로봇팔의 모델링을 Lagrange 방정식을 이용하여 수행하여 시스템의 수식모델을 구한 뒤, 이 모델을 기본으로 하는 강인한 제어기의 설계를 LMI(Linear Matrix Inequality)을 적용한 H$_{\infty}$이론을 도입하여 수행한다. 이 과정에서 로봇팔의 선단부하 변경으로 인한 시스템 파라미터의 변동을 플랜트가 가지는 불확실성 영역으로 간주하여 이를 설계에 적극적으로 반영함으로서 결과적으로 플랜트의 파라미터 변동에 강인한 제어기를 구현하고 이것의 유효성을 실험을 통하여 확인한다. .실험을 통하여 확인한다. .

  • PDF

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론 (Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

HIERARCHICAL SWITCHING CONTROL OF LONGITUDINAL ACCELERATION WITH LARGE UNCERTAINTIES

  • Gao, F.;Li, K.Q.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.351-359
    • /
    • 2007
  • In this study, a hierarchical switching control scheme based on robust control theory is proposed for tracking control of vehicle longitudinal acceleration in the presence of large uncertainties. A model set consisting of four multiplicative-uncertainty models is set up, and its corresponding controller set is designed by the LMI approach, which can ensures the robust performance of the closed loop system under arbitray switching. Based on the model set and the controller set, a switching index function by estimating the system gain of the uncertainties between the plant and the nominal model is designed to determine when and which controller should be switched into the closed loop. After theoretical analyses, experiments have also been carried out to validate the proposed control algorithm. The results show that the control system has good performance of robust stability and tracking ability in the presence of large uncertainties. The response time is smaller than 1.5s and the max tracking error is about $0.05\;m/S^2$ with the step input.

Robust Fuzzy Feedback Linearization Control Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.356-362
    • /
    • 2002
  • In this paper, well-known Takagi-Sugeno fuzzy model is used as the nonlinear plant model and uncertainty is assumed to be included in the model structure with known bounds. Based on the fuzzy models, a numerical robust stability analysis for the fuzzy feedback linearization regulator is presented using Linear Matrix Inequalities (LMI) Theory. For these structured uncertainty, the closed system can be cast into Lur'e system by simple transformation. From the LMI stability condition for Lur'e system, we can derive the robust stability condition for the fuzzy feedback linearization regulator based on Takagi-Sugeno fuzzy model. The effectiveness of the proposed analysis is illustrated by a simple example.