356 ICASE: The Institute of Control, Automation, and Systems Engineers, KOREA Vol. 4, No. 4, December, 2002

Robust Fuzzy Feedback Linearization Control
Based on Takagi-Sugeno Fuzzy Models

Chang-Woo Park and Mignon Park

Abstract: In this paper, well-known Takagi-Sugeno fuzzy model is used as the nonlinear plant model and uncertainty is assumed
to be included in the model structure with known bounds. Based on the fuzzy models, a numerical robust stability analysis
for the fuzzy feedback linearization regulator is presented using Linear Matrix Inequalities (LMI) Theory. For these structured
uncertainty, the closed system can be cast into Lur'e system by simple transformation. From the LMI stability condition for
Lur'e system, we can derive the robust stability condition for the fuzzy feedback linearization regulator based on Takagi-Sugeno
fuzzy model. The effectiveness of the proposed analysis is illustrated by a simple example.
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I. Introductions

A feedback linearization control has been widely used in
nonlinear control theory [1]-[2]. On the other hand, since
nonlinearity can be efficiently modeled and canceled by
fuzzy logic system, fuzzy feedback linearization has
attracted the attention of many control researchers [3]-[7].
Fuzzy feedback linearization is a feedback linearization
method which uses a fuzzy model as a nonlinear system
model. A fuzzy model has excellent capability in nonlinear
system description and is particularly suitable for the
complex and uncertain system[9]. In [3], the fuzzy feedback
linearization concept was introduced using Takagi-Sugeno
fuzzy model. However, robustness issue which is significant
in practical applications was not considered in this work. In
some previous researches, adaptive techniques were applied
and adaptive fuzzy feedback linearization methods were
suggested to guarantee robustness [4]-[7].

While adaptive fuzzy feedback linearization guarantees
Lyapunov stability in the presence of uncertainty, it has
some practical limitations because of its complex structures.
From a practical point of view, robust approach is more
suitable for fuzzy feedback linearization to overcome
uncertainty. In [8], the L, robust stability analysis
technique of the fuzzy feedback linearization regulator via
multivariable circle criterion has been proposed.

However, it based on graphical stability analysis method
there exist some difficulties to apply it to control problems
directly.

In this paper, inspired by the work in [8], we have
studied a numerical stability analysis method for the robust
fuzzy feedback linearization regulator using Takagi-Sugeno
fuzzy model. To analyze the robust stability, we assume that
uncertainty is included in the model structure with known
bounds. For these structured uncertainty, the robust stability
of the closed system is analyzed by applying Linear Matrix
Inequalities (LMI) theory.

LMI theory is the new and fast growing field and an
valuable alternative to the analytical method [10], [11]. A
variety of problems arising in system and control theory can
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be reduced to a few standard convex or quasiconvex
optimization problems involving LMI. Since these resulting
optimization problems can be easily solved by numerical
computation, LMI techniques are very efficient and practical
tools for the complex control problems. Specifically, a class
of fuzzy control problems which is difficult to solve
analytically, LMI techniques can afford the practical
solutions. In the recent papers [12]-[16], the applicability of
LMI techniques were showed excellently to fuzzy control
systems.

To apply LMI techniques to our stability analysis
problems, the closed system should be transformed into the
standard form which has available LMI solution. By the
simple transformation, our closed system can be cast into
the well-known Lur'e system [17]. With the derived
sufficient stability condition of the Lur'e system via LMI
theory, we can extract the sufficient condition for the robust
stable fuzzy feedback linearization regulator.

II. The feedback linearization based on T-S
fuzzy models
Consider the regulation problem of the following #-th
order nonlinear SISO system

" = Ax) + g(x)u (1)

where f and g are unknown or uncertain, but bounded
continuous nonlinear functions. Let x=[x %, - , 2" P17
e R" be the state vector of the system which is assumed
to be available.

In this paper, well-known Takagi-Sugeno fuzzy model is
used to identify the unknown nonlinear system (1).
Takagi-Sugeno fuzzy model is available in IF-THEN form
(2) or Input-Output form (3).

plant rule 7 :

IF x is My and x is Mpand + and "V is M,

THEN 5 =( a+ Aa;(0))7 x+(b+4b()u 5,
i=1,2,, 7
where x=[x, %, - , 2" 17,

a;, da;,(DeR"", b, Ab(HER



Transactions on Control, Automation, and Systems Engineering Vol. 4, No. 4, December, 2002

In (2), M; is the fuzzy set and » is the number of rules.

Also, Ada;(t) and 4b(t) denotes the norm-bounded
time-varying modeling uncertainty.

D art Aa ()7 x+ (b db,(1)u)

() __ =
ﬁlwi( x)

=

= glhi( x{( a;+ Aai(t))T'x+(bl-+dbl-(t))u} 3)
where
_wlx)

3wl x)

=

wl 2= 11 M), h2)=

My(xY" ) is the grade of membership of x“~V in A,

It is assumed in this paper thatw{x) = 0, i=

1,2, 7, }:'lwl-(x) 50

1=

Therefore,

B(x) 20, i=1.2, 7, 2hlx) = 1

For (3) to be controflable, Zlh,-( x)b; = 0 for xin

certain controllability region U, C R”" is required. If this
controllability requirement is satisfied, the following fuzzy
feedback linearization regulator (4) can cancel the
nonlinearity of (3) and achieve perfect linearization (5).

2T~ x — Zh,(x) aiT- x
U= =1
Sl )b,
/\7. T
Sh()(a ~ al) -z
= “4)
2 i 28,
where we use the same a; , b, and j( x) with the

fuzzy model (3) for all 7 and @ € R is the linear state
feedback gain vector. The perfectly linearized system can be
written as (5).

X = a *x (5)

However, due to the inevitable uncertainty, perfect
linearization can not be achieved in practical application. By
substituting (4) into (3), the imperfectly linearized system
can be written as (6). From the bounds of Aa;(¢) and
4b(t) , the bound of ay(¢) can be derived as in
Appendix A. Thus, the closed system (6) can be treated as
the linear system with the sector bounded nonlinearities. In
the next section, the numerical robust stability analysis via
LMI for the closed system (6) will be presented.

357
= 2 at Z:lh"(x) da,(1)" - x
hi( x)Ab(t) ~
e ——(Xh(x) (3= a) - x)
Shlae
= /(;T s x + aAf(t)T' x ©
where

ay() = le’li(x) Aa,-(t)T cx

2 0 2) 2b,(0)
+_’;_—_

: {2h(x) (a—a) - x) O
Sh(x)b T

1. LMI-based robust stability analysis
Consider the following Lur'e system (8)

x= Ax + Bp (8)
p;(t) = &, x; (1)), i =1, -, n,

where p(¢) € R™ , and the functions ¢; satisfy the [0, 1]

sector conditions

0 < gp{0) € & for all 6 €R %)

or equivalently,
$:(0)($;(6) —0) <0 for all o €R

The linear system with the sector bounded nonlinearities
can be cast into Lur'e system. Therefore, the closed system
(6) can be cast into Lur'e system. In Theorem 1, Lyapunov
stability condition for Lur'e system is derived using LMI
Theory. In the proof of Theorem 1, S-procedure in LMI
techniques [10] is used.

Theorem 1: Lur'e system (8) is stable in the sense of

Lyapunov if there exist P > 0, A = diag (A, -+, 4,,)
> Qand T = diag (¢, =, r,) = 0 which satisfy
LML (10).
ATP+PA PB+ATA+ T ] <o o)
B"P+AA+ T AB+B'A-2T
Proof: Let us choose a Lyapunov function
Vw) = x"Px+ 2204 #0) do (an

Thus the data describing the Lyapunov function are the
, n,. For V(x)
to be positive for nonzero x, we require P > ( and
A = diag (A, -, 4,) = 0.

matrix P and the scalars A, , i = 1, -

The time derivative of V(x) is

dI;tx = 2(«"P+ 2:-"1/1:'17,' I)( Ax + Bp) (12)
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where I; denotes the j-th row of nXx » identity matrix.
Lyapunov stability condition*d%til < (0 holds for all

nonzero x if and only if
( 2™P+ D aipid;) ( Ax + Bp) <0 (13)

for all nonzero x.
The S-procedure in LMI techniques then yields the
following LMI condition

AP+ PA

PB+ATA+ T <0
BTP+ AA+T

AB+BTA-2T
where

T = diag (q;, -
A = dlag (/11,

., Tp) 20,
. An) 2 0.

Therefore, Lur'e system (8) is stable in the sense of
Lyapunov if there exist P> 0, A =0 and T =0
which satisfy LMI (10).

Remark: When we set A = (, we obtain the LMI

AP+ PA PB+T]

B'P+ T 2T
which can be interpreted as a condition for the existence of
a quadratic Lyapunov function V(x) = xTP x for Lur'e
system.

To apply Theorem 1, the closed system (6) should be
transformed into Lur'e system (§).
First, we divide (6) into the linear and the nonlinear part as

(14

(n) ~T

x” — a -x = aN(t)T-x (14)

Then, the differential equation (14) can be represented by
the state-space equation of (15).

xr= Ax + B p (15)
pi(t) = ¢, x: (1)), i=1, -, n

where,
0 1 0 0 000 -0
_ 0 0 1 0 1000 -0
A=10 0 0 11, B=OOQ-O
@ @ ay - a, 111 1
and

G Cx (1)) = am(t)x; (1), =1, =, n

The sector condition of @, is

@, <o¢; (o)< B,

where @, = ™I (g,(p) and

Bi= ™ (an(D).

The sector bounds @; and B; can be obtained by the
method in Appendix.

By substituting the equations (17) into (15) and (16), the
general {a,;, B; ]sector condition for ‘@, (16) can be cast
into the [0, 1] sector condition (9) for ¢,. This substitution

procedure is called 'loop transformation'.

b= ¢ (1)) = (Bi—a) p; + a;x; (7
2: () = ¢, x:(8) ), i =1, >, n

or in the matrix form.
b= Mp+ Ny

where M = diag (@, , -, a,) and N = diag

Br—ar, =, By—a,)
And the resulting Lur'e system of loop transformation can
be expressed as (18)

x= Ax + Bp (18)
Z’z(t) = ¢1( x,(t) ), [ = 1' ,omy

whereA=z+FNand B= BM

anit)—a;

¢:(C x:(£)) = Bi—a,

x; (t), i=1, -, n

Applying Theorem 1 to the transformed Lur'e system
(18), we can derive the robust stability condition for the
closed system (6), as in Theorem 2.

Theorem 2: The closed system (6) is robust stable in the
sense of Lyapunov if the corresponding Lur'e system (18) of
the closed system (6) satisfies Theorem 1.

Proof: The closed system (6) can be transformed into the
corresponding Lur'e system (18) by the above-mentioned
loop transformation. Therefore, the stability of Lur'e system
(18) implies the robust stability of the closed system (6).
Thus, if the corresponding Lur'e system (18) of the closed
system (6) satisfies Theorem 1, then we can conclude that
the closed system (6) is robust stable in the sense of
Lyapunov.

IV. Examples
Consider the problem of balancing and swing-up of an
inverted pendulum on a cart shown in Fig. 1. The equations
of motion for the pendulum are

JéI:xz
t=r(x) + g(x) u + d(t)

gsinlxy) — amixi sin(@x)/2 — acos(x;)u
43— amlicos®(x;)

+d(t)

where ¥ = [ x; x, ]7 and x, denotes the angle ( in
radians ) of the pendulum from the vertical, and x, is the

angular velocity. g = 9.8m/s? is the gravity constant,
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m is the mass of the pendulum, M is the mass of the
cart, 2/ is the length of the pendulum, # is the control
force applied to the cart (in Newtons). d(¢) is the external

1
m+ M

M= 80kg and 2/ = 1.0m in the simulation.

disturbance and ¢ = . We choose m = 2.0 kg,

4 =r,
m/—\
6 =x
21
M <4 u

Fig. 1. The inverted pendulum system.
The dynamic equations can be approximated by the

following two fuzzy rules and the membership functions
used in this fuzzy model are shown in Fig. 2.

/ue \

Rulel

-90 0 x1 90[deg.]
Fig. 2. Membership functions.

Rule 1 : IF x is about ()
THEN x=( a1+ da, (t))7+ 2+ (b +4b,(t))utd
Rule 2 : IF x is about 1*275 (x| <%)

THEN x=( ay+ Ada,(£))7 - x+ (by+ Jby(£))u+d
(19)

(19) can be inferred as

Zwl O art 4ai ()7 x+ b+ 2b()u)

o glwi( x)

+d

- glhl-(x){( at da (D)7 x4 b+ b, (1))} +d
(20)

wd x)

where, w,( x )= ﬁ Mij(x(i_l))’ h{ x)=—3—""— and,
=t 2‘.1 wi x)

| g _
al—[4l/3_aml 0]—[17.29 ol

[ 2 _
a2~[7r(4l/3—am152) 0] [9.35 0],

blz—m:—o.ms,
= — a 5
by —L—4 Ep—: 0.0052

we assume that da, () , da,(t) . 4b,(t) , 4by(¢)

are unknown but bounded as follows.

sl <day(8) <1, -05 <day(t) <05,
-l <day () <1, 05 <day(t) <05,
-0.001 <4b,(t) < 0.001 , -0.001 <Ab,(t) <0.001

In this example, the following fuzzy feedback
linearization regulator (21) is used to stabilize the system
(19) or (20)

2 x- Slhf( x) a - x
2
PITEI

2h(x)(a_ a’ ) x
=— (21
glhi( x)bl‘

where @ = [-50 ,-30]
The resulting closed system is

F= 2 xt Ph(x) dan)’
S )b ~
S e 2h(x)(a— a) - x}
2 hix)e T
- 2. x + aN(t)T- x (22)

where agp(H) = glh,-(X) Aal‘(f)T

S ) b() ~
b (x) (a— @) - x)
ﬁh(x)b- =l

The maximum and minimum sector bounds of a@y(¢) for
1, 2 can be found from (25) and (26) in Appendix A.

mt am(t)=4.12 , mm am(t)=—4.12

T () =1.03 , m;“ an(t)=-1.03

Then, the closed system (22) can be cast into the
following Lur'e system (23) by the loop transformation.

x = Ax + Bp (23)
D,'(l‘) = ¢1( xi(t) ), i =1, -, ",

where
A = A+ BN
Lo —al* [0 0% o]
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- [—41976 —27%94]

BZFMZ[ (1) (1)][_4'012 —1.003]

- [—4.012 —1.003]

b = L
mell‘x an(t) — m;n a ni(t)
c Can(t) x; — m;n an(t) x;)

For this transformed Lur'e system (23), we check if the
sufficient condition of Theorem 1 is satisfied. To simplify
our analysis, we consider the quadratic stability condition,
ie. A = 0. Then, we use the interior-point method [10]
in LMI techniques to obtain P and T which satisfy LMI
(10). It can be easily verified that the following P and T
in (24) satisfy LMI (10), which can be obtained by some
computer-aided optimization tools [18].

7.8 1.1

P 1.1 0.9
_ [ 12 o
T [ 0 85

and

]
] (24)

Therefore, we can conclude that the sufficient condition
of Theorem 1 is satisfied and the closed system (22) is
robust stable. To verify the Lyapunov stability, computer
simulation is performed with the initial condition
x;=[1 0]. Fig. 3 and Fig. 4 illustrate the simulation

results of the state variables.

e e L
0 1 2 3 4 5 6 7 8 9 10
time

Fig. 3. Simulation result of state x,.

Fig. 4. Simulation result of state x,.

V. Conclusion

In this paper, we have presented the LMI-based robust
stability condition which can be solved numerically for the
fuzzy feedback linearization regulator via Takagi-Sugeno
fuzzy model. Feedback linearization is a very useful control
scheme in nonlinear control theory. But, various analytic
constraints and uncertainty make it difficult to design and
implement the robust stable feedback linearization
controller. To overcome these difficulties, we implement the
fuzzy feedback linearization regulator based on Takagi-
Sugeno fuzzy model and propose the LMI-based robust
stability condition. Through a simple example, we illustrate
the effectiveness of the proposed method.
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Appendix A
In the followings, we need the basic assumption that

A =1 and " p(x(p)=1.

The maximum and minimum sector bounds of g,(¢) can
be computed from (25) and (26)

= X [ S (D) da0) 03)
o 3 12 (0)b() S e
Zlh,’(x(t))bi =
min (g, ()= M0 30 (x(0) day(D
i p 2 (26)
i 33 kA &()ab(0) e,
PINTCTON I

where e;= a;— a;
The second terms of (25) and (26) can be computed using
the following property.

M (day(0)< ZhAx(D)dai(D)= ™ (day(n) @D

The third terms of (25) and (26) can be computed from
(28) and (29)

> il x()2b,()
max | B 3 lx(D)e,
ks
Y e | SR | . | L
:max{ﬁ .i, ﬂ%, ?~e,-, ? '_eLv
) S 1A S | A B | L
b i y == b ! " -
(28)
3 (D) Ab LD
min | AT 21%(1(0)6:7
ST O
R ] T R |
mm{?J se W > Ln'Ej_ Ln'ej
46", A AP . 4 =
(29)

where, b/={ b, | b;>0 )}, b/={ b;| b;<0}
ef'={e;le;=20)}, ej={¢e;le;<0}

s Bhlx0)ph < 0, b < B rlx()0} < b
"< Bahlaey < €

el < Z}lh,-(x(t))eﬁ < ¢

Ap™ = “}f"f {((4b(D) |V dblt) 20 },

4p"= “}f‘;‘ {(4bD) | dbLd) <0}

AP = f?“; {(4b(D) | dbLt) =0 },

A= " ((4b) | 46D <0 )

Appendix B
- S-procedure of LM theory [10]
Let Fy, -+, F, be quadratic functions of the variable

£ = R” such that

F(&) = eTT.6 + 2ul€6 + o,

7 = 0 RERITI )
T; = TI. (30)
We consider the following condition on Fy, -, F, :

Fy(€&) = 0 for all & such that

Fi(& =0, i=0, -, p

Obviously, if there exists 7, = 0, -+, r, = 0 such
that
forall & Fi(8) — EoF(8) >0,
then (30) holds or equivalently (32) holds..

[To uo], ﬁrl_[Ti “i]zo @31

T = T
u) Uy =1 Uu; v;
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